Хомутов С. О. – д.т.н., профессор, Рассохина Е. О. – студент группы 8Э-01, ФГБОУ ВО «Алтайский государственный технический университет им. И. И. Ползунова», РФ, Алтайский край, г. Барнаул.
Методика формирования математических моделей для расчёта удельной мощности для помещений промышленного и общественного назначения
Тюрина Наталья Александровна, [email protected]
Грибанов Алексей Александрович, [email protected]
Аннотация:
В статье подробно рассмотрен метод регрессионного моделирования для формирования математической модели расчета для последующего расчета удельной мощности для проектирования освещения в помещениях промышленного и общественного назначений. Также в статье представлен подробный расчет относительной погрешности модели.
Ключевые слова: метод удельной мощности, математическая модель, регрессионное моделирование, освещенность, источники света.
Расчет электрических нагрузок является основополагающим этапом проектирования систем электроснабжения. Электрические нагрузки подразделяются на силовые и осветительные. На сегодняшний день существуют три наиболее популярных метода расчета осветительных нагрузок: метод удельной мощности, точечный метод, метод коэффициента использования. Метод удельной мощности наиболее часто используется проектировщиками для приближенного расчета мощности осветительного оборудования, отличается простотой использования и сравнительно малым объемом исходных данных, что значительно расширяет круг его использования. Значения удельной мощности были получены в середине двадцатого столетия и, к сожалению, их использование для современных светодиодных и люминесцентных источников некорректно[1]. В ходе эксперимента мною были получены актуальные значения для таких источников.
В рамках исследования было проведено 830 экспериментов путем расчета в среде Dialux evo, рассмотрено 29 расчетных случаев. Расчетный случай – это помещение общественного и промышленного назначения, для которых определялись нормируемая освещенность, высота подвеса источников света, площадь. Помимо этого, для каждого расчетного случая было отобрано 6 источников света. Всего в эксперименте участвовало 49 источников света.
В ходе исследования были получены математические модели, для каждой из которых посчитаны относительная погрешность источника света и относительная погрешность для расчетного случая. Значения относительных погрешностей лежат в допустимом диапазоне, что позволяет в дальнейшем рассчитывать мощность источников света для проектирования освещения в помещениях промышленного и общественного назначений для входных параметров, не участвовавших в эксперименте.
Общий вид математической модели (1):
𝑊=𝑎∙𝑆4+𝑏∙𝐸4+𝑐∙𝑆3+𝑑∙𝐸3+𝑒∙𝑆3𝐸+𝑓∙𝑆3𝐻𝑝+𝑔∙𝐸3𝐻𝑝+ℎ∙
𝐸3𝑆+𝑖∙𝐻𝑝2+𝑗∙𝑆2+𝑘∙𝐸2+𝑙∙𝐻𝑝2𝑆+𝑚∙𝐻𝑝2𝑆2+𝑛∙𝐻𝑝2𝐸2+𝑜∙𝑆2𝐸2+𝑝∙
𝐻𝑝2𝐸+𝑞∙𝑆2𝐻𝑝+𝑟∙𝑆2𝐸+𝑠∙𝐸2𝑆+𝑡∙𝐸2𝐻𝑝+𝑢∙𝐻𝑝2∙𝑆∙𝐸+𝑣∙𝐻𝑝∙𝑆2∙𝐸+
𝑤∙𝐻𝑝∙𝑆∙𝐸2+𝑥∙𝐻𝑝+𝑦∙𝑆+𝑧∙𝐸+𝛼∙𝐻𝑝∙𝑆+𝛽∙𝐻𝑝∙𝐸+γ∙𝑆∙𝐸+𝛿∙𝐻𝑝∙𝑆+𝜀
(1)
где – значение удельной мощности осветительной нагрузки на единицу площади помещения, Вт/м2;
a, b, c, d, e, f, g, h, i, j,k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, 𝛼,𝛽,γ,𝛿,𝜀 – коэффициенты регрессионного уравнения, которые необходимо определить.
Для определения значения уровня варьирования применялась следующая формула (2):
где 𝑋пр𝑖 – значение параметра, приведённое к шкале от −1 до +1;
𝑋𝑖 – текущее значение параметра, абс. ед.;
𝑋𝑚𝑎𝑥 – максимальное значение параметра, абс. ед.;
𝑋𝑚𝑖𝑛 – минимальное значение параметра, абс. ед.
Уровни варьирования для использовавшихся в экспериментах параметров ниже приведены в таблице 1.
Таблица 1
Уровни варьирования параметров
Для определения коэффициентов уравнения приведем результаты расчётного эксперимента к табличному виду. В дальнейших таблицах для упрощения введён параметр X0=1, соответствующий свободной переменной, перед которой стоит коэффициент.
Данные эксперимента для источника света ULV-R24J представлены в таблице 2.
Таблица 2
Таблица эксперимента для источника света ULV-R24J
Для определения коэффициентов уравнения была составлена матрица Х, включающая в себя закодированные условия эксперимента (столбцы 2-32 таблицы 2) и матрица Y, включающая в себя результаты эксперимента (столбец 33 таблицы 2). Далее матрица Х транспонируется и умножается на исходную матрицу Х, получается матрица Xт ·X. Матрица Y также умножается на транспонированную матрицу X, получается матрица Xт ·Y. Затем для матрицы Xт ·X вычисляется обратная матрица матрицы Xт·X-1. Перемножив обратную матрицу Xт ·X-1 и матрицу Xт ·Y получим матрицу коэффициентов уравнения. Аналогичные действия были проведены и для других источников. Коэффициенты уравнения представлены в таблице 3.
Таблица 3
Значения коэффициентов уравнения для источника света ULV-R24J
Подставив в уравнение регрессионной модели значение коэффициентов получим расчетные значения удельной мощности. Для проверки модели необходимо определить погрешность по следующей формуле (3):
где 𝛿- относительная погрешность модели;
Э-значение, полученное экспериментальным путем
Р- значение, полученной в ходе расчетов.
Погрешность модели представлена в таблице 4.
Таблица 4
Погрешность модели
Средняя относительная погрешность модели рассчитывается по формуле (4):
Список используемой литературы
1. СП52 13330.2016. Естественное и искусственное освещение. Общее положение: дата ведения 1996-01-01. – Москва: Стандартинформ, 2017. – 135с.