Литмир - Электронная Библиотека

В Nature Neuroscience также указывалось, что «трудно создавать научные статьи, описывающие (и, самое главное, объясняющие) сложные закономерности активации мозга. Поэтому часто наблюдается тенденция к консервативным ограничениям, что позволяет сократить количество фактов активации и представить более простой результат»[127].

Однако сложности нейровизуализационных исследований начинаются задолго до того, как будут проведены измерения. Главная проблема заключается в разработке содержательного общего проекта исследования с надежными экспериментальными параметрами и соответствующими контрольными условиями. «Нынешняя проблема визуализации состоит в том, что бесконечно сложно выполнять правильные исследования, тогда как получить изображения очень легко», – делает вывод пионер нейровизуализации Стивен Петерсон[128].

Вне зависимости от всех оговорок, видеть значит верить. Психологи Дэвид Маккейб и Алан Кастел изучили, как испытуемые оценивают достоверность фиктивных результатов нейронаучных исследований, когда им показывают или не показывают изображения мозга[129]. Во время трех различных экспериментов, в которых сфабрикованные данные когнитивной науки были представлены просто в виде текста, в виде текста и диаграммы и в виде текста и изображений мозговой активности, тестируемые студенты всегда считали «научно наиболее убедительными» тексты, сопровождаемые изображениями. Маккейб и Кастел заключили, что «часть очарования – и правдоподобия – исследования с применением метода визуализации заключается в убедительности самих изображений мозга»[130]. Мозговые сканеры – это доказательные машины. Для историка науки Хагнера – также и в том смысле, что они «сводят до сих пор плохо понятные причинные связи к поверхностному рассмотрению»[131].

Арифметика любви

С другой стороны, в общественном восприятии сканеры для проведения МРТ имеют репутацию настоящей «машины объективности»[132]. Внушительные, футуристические, почти магические высокотехнологичные объекты, которые обнажают скрытое нутро человека. При этом существует множество веских причин скептически относиться к претендующим на объективность фМРТ-изображениям. Чтобы обосновать это, сделаем обзор множества проблемных областей функциональной магнитно-резонансной томографии.

Во-первых: обычно в качестве итога функциональных нейровизуализационных исследований мы получаем разностные изображения. То, что мы видим, является результатом процесса субтракции. Процедура подчиняется простой и, прежде всего, очевидной логике. Чтобы иметь возможность засвидетельствовать определенную работу мозга, испытуемый в сканере подвергается двум опытам. Измеряется изменение местного потребления кислорода крови в интересующих экспериментальных условиях (условиях испытания), а также в контрольных условиях. В поисках, скажем, участка мозга, отвечающего за романтическую любовь, влюбленным показывают фотографии их любимого партнера, а также фотографии друзей того же возраста и пола, к которым у них нет «истинной, глубокой и сумасшедшей» привязанности[133].

Затем МРТ-изображение, выполненное в контрольных условиях, просто субтрактируют (вычитают) из снимка, который сделан при созерцании испытуемым предмета его страсти. Так надеются устранить с изображения все неспецифические активности мозга, которые не имеют отношения к влюбленности[134]. Расчет для корректировки активности делают следующим образом: (влюбленный + все остальное) – (не влюбленный + все остальное) = влюбленный. В представленном здесь примере изучения влюбленности расчеты руководителя исследований Андреаса Бартельса и Семира Зеки дают следующий результат: влюбленный = = активация передней части поясной извилины и срединной части островковой доли коры головного мозга, а также путамена и хвостатого ядра. Кроме того, деактивация задней части поясной извилины и миндалин, а также правых лобной, теменной и височной долей коры головного мозга.

Логично, что через несколько лет Семир Зеки, видный нейроученый из лондонской Лаборатории нейробиологии Wellcome, посвятил себя темной стороне человеческих эмоций. В рамках исследования «Нейронные корреляты ненависти» испытуемым, находившимся в сканере, теперь уже нужно было не любить от всего сердца, а искренне ненавидеть[135]. Для этого были подобраны люди, которые «демонстрируют сильную ненависть к тому или иному индивидууму». При этом объектами ненависти всегда являлись бывший сексуальный партнер или коллега по работе. Таким образом был обеспечен надежный натуралистический подход к исследованию. Степень враждебности получила количественную психометрическую оценку по «шкале страстной ненависти».

Аналогично опыту с романтическими чувствами, испытуемые приносили с собой фотографии ненавистных им людей. Затем эти фотографии демонстрировали им в сканере, чередуя с нейтральными лицами. Опять же, изображение мозга, реагирующего на нейтральные изображения, вычли из снимка мозга ненавидящего.

Итак, по словам Зеки и его коллеги Джона Пола Ромайи, мозг ненавидит так: активируются средняя лобная извилина, путамен, премоторная зона, островковая доля и прецентральная извилина правого полушария, тогда как верхняя лобная извилина правого полушария, напротив, не активна. Авторы заключают: «Исследование показывает, что активация мозга ненавидящего человека происходит по определенной схеме»[136].

Особенно внимательный читатель сможет заметить, что активация островковой доли и путамена уже отмечалась выше при описании влюбленных испытуемых. Хотя авторы исследования ненависти в обсуждении этого примечательного обстоятельства благоразумно отделываются общими словами («текущее состояние знаний не позволяет сделать точную интерпретацию»), онлайн-выпуск журнала Deutsche Arzteblatt предлагает даже биологическое объяснение: «Дружба и вражда активируют путамен правого полушария. Эту область исследователи мозга связывают с подготовкой тела к движениям. В случае чувства любви движения могут быть связаны с желанием приблизиться к любимому человеку или защитить его. Ненависть способна стать причиной агрессивных действий или противодействия противнику. Второй центр, который активируют оба чувства, – это островковая доля. Ее Зеки считает ответственной за стресс, связанный как с чувством ненависти, так и с романтической любовью (в форме ревности)»[137]. Не существует результатов фМРТ, которые нельзя было бы объяснить с помощью богатого воображения и, в еще больше степени, с помощью смелого упрощения.

Морское сравнение

Помимо базовых редукционистских оговорок разностный метод связан также с технической проблемой доступной точности измерения. Поскольку мозг постоянно активен[138], уже «фоновый шум», вычитаемый при субтракции контрольных данных, оказывается в большинстве случаев намного существеннее, чем предполагаемый специфический результат, например, при принятии решения нравственного характера. Исследования показали, что при решении когнитивной задачи затраты энергии мозгом увеличиваются по сравнению с основным состоянием менее чем на 5 %[139].

вернуться

127

Там же. С. 846.

вернуться

128

Miller G (2008) Science. С. 1412.

вернуться

129

McCabe DP, Castel AD (2008) Cognition.

вернуться

130

Там же. С. 343.

вернуться

131

Hagner M (2006) «Der Geist bei der Arbeit». С. 14.

вернуться

132

Slaby J (2011) «Objektivitätsmaschine – der MRT-Scanner als magisches Objekt». Доклад на конференции «Сила вещей» в Берлинском университете им. Гумбольта, 30.9.

вернуться

133

Bartels A, Zeki S (2000) NeuroReport.

вернуться

134

Одна только обработка визуальных стимулов вызывает, например, сильную активность в зоне зрительных путей и зрительной коры.

вернуться

135

Zeki S, Romaya JP (2008) Public Library of Science One.

вернуться

136

Там же.

вернуться

137

Meyer R (2008) Deutsches Arzteblatt.

вернуться

138

Осознание того, что мозг очень активен, даже если «ничего не делает», привело на рубеже веков к старту очень важных сегодня «исследований состояния покоя». С помощью фМРТ и компьютерного моделирования изучается сеть пассивного режима работы мозга, активная, если человек не взаимодействует с внешним миром, а просто спокойно предается своим мыслям. Изучение «состояния покоя» стало одной из центральных тем современных исследований мозга.

вернуться

139

Raichle ME (2010) Scientific American.

11
{"b":"765206","o":1}