Литмир - Электронная Библиотека
Содержание  
A
A

Но если применить его при описании роста сети на первом этапе (см. далее) и, соответственно, роста численности первых архантропов, то получим, что положение циклов эволюции на оси времени и время появления рода Homo, рассчитанные теоретически, не согласуются с данными палеодемографии.

Однако, если слегка модифицировать алгоритм так, чтобы при подсчете прироста носителей с каждого клаттера добавлять к числу его связей единицу, формально полагая, что копируются не только входящие в клаттер связи, но и его узел (т. е., если считать, что число копий клаттеров-носителей, снимаемых с каждого сетеобразующего клаттера за цикл, равно текущему размеру сети), что совершенно несущественно на втором этапе, когда таких клаттеров и, соответственно, подключенных к ним связей сотни, тысячи и даже десятки тысяч – то вот такой алгоритм будет правильно описывать эволюцию, историю и рост населения мира на всех этапах[9].

Дополнительно хотелось бы отметить, что выбранный алгоритм при учете правила финализации цикла и звена, которое, хотя и может быть сформулировано по разному, но не оказывает никакого влияния на результат, хорош уже тем, что чрезвычайно прост и эстетичен.

Даже если бы оказалось, что он не имеет никакого отношения к реальному росту населения Земли, модель все равно заслуживала бы внимания уже только потому, что при минимальных предпосылках позволяет правильно описывать как количественно, так и качественно динамику роста (начало роста, неолит, переход), а также цикличность глобального развития: сокращающиеся по закону прогрессии циклы эволюции, глобальные исторические и экономические циклы. В таком случае модель можно было бы рассматривать как простую и эффективную схему, позволяющую систематизировать многочисленные демографические и исторические данные.

* * *

Применим данный алгоритм к биниальной иерархической сети ранга R. Будем считать, что рост сети начинается с двух клаттеров. Рост ИС любого ранга, подчиняющийся принятому алгоритму, условно можно разбить на три этапа:

Первый этап – рост от двух до √P клаттеров (P – это вес клаттера или число носителей, которое он содержит).

Второй этап – рост от √P до Р клаттеров.

Третий этап – операция репликации: создание одной копии полученной совершенной сети. Рост сети ранга R, и это логично, следует считать законченным, когда будет построена совершенная сеть ранга R+1. Тем не менее поскольку операция репликации ИСС ранга R+1 не может считаться по принятому здесь алгоритму началом ее роста – ее следует определить как третий, завершающий этап роста сети ранга R.

Введем дополнительно понятие звена роста сети. Определим его как последовательность материнских клаттеров, в процессе копирования которых полностью собирается очередной дочерний клаттер. Число таких клаттеров, составляющих звено, назовем его длиной. На первом этапе звено включает ряд повторяющихся циклов, причем каждое последующее звено короче предыдущего; на втором этапе – цикл состоит из некоторого числа укорачивающихся звеньев. Длина звена за весь период роста уменьшается от P/2 до единицы.

* * *

Рассмотрим теперь все этапы роста ИС на примере сети ранга 3. Вес клаттера Р = 28 = 256, т. е. число носителей в клаттере равно 256. Корень из веса √Р = 16. Стартовый размер сети считаем равным двум.

Первый этап роста сети
Население Земли как растущая иерархическая сеть - _15n.png

Рис. 1. Старт роста сети 256.

Алгоритм копирования следующий: на каждую связь и на каждый узел копируемого клаттера (формально узел – это точка внутри клаттера, в которой сходятся подведенные к нему связи) устанавливается носитель. В данном случае связь одна, узел всегда один. Всего на клаттере копируем два носителя. Нужно собрать 256 носителей, поэтому переходим к следующему клаттеру и копируем еще два носителя.

Собрали четыре носителя. Цикл закончился, он оказался пустым, т. к. все имеющиеся на момент входа в цикл клаттеры скопированы, а новый собрать не удалось. Всего имеем 63 пустых цикла. На 64-м цикле и 128-ой по счету операции копирования (длина звена составила 128 клаттеров) получаем 256 носителей. Сборка третьего клаттера завершена; устанавливаем его в сеть, прокладываем связи.

Население Земли как растущая иерархическая сеть - _14n.png_0.png

Рис. 2. Собран первый клаттер.

Теперь каждый клаттер имеет уже две входящие в него связи, поэтому копируем по три носителя на клаттере или 32 = 9 девять за цикл. Число 256 не делится нацело на 9, как в предыдущем случае: 256/9 = 28 целых и 4/9, поэтому последний 29-й цикл будет неполным, т. к. первый клаттер на нем будет скопирован полностью (3 носителя), второй – частично (один носитель), а третий – останется нескопированным. И здесь возникает неопределенность в вопросе как начинать следующее звено: с продолжения предыдущего неполного цикла или с начала нового?

Непонятно также следует ли учитывать неполный цикл, когда копируются не все носители сети, при подсчете общего числа циклов звена. Ведь в приложении этой математической модели к росту населения Земли наиболее важными законами роста являются закон постоянства времени цикла и синхронности (синфазности) роста и развития. Неясно, правда, должна ли такая синхронность (синфазность) роста строго выполняться для каждого цикла или только для моментов гармонического достижения; а может быть синхронно должен завершаться только последний цикл роста сети данного ранга, на момент окончания которого она становится совершенной? (Учитывая факт гиперболического роста населения мира, этот вариант вряд ли следует принимать во внимание.)

Если считать, что каждое следующее звено начинается с нового цикла, что представляется наиболее логичным, то время роста сети в приложении этой математики к процессу эволюции может быть выражено только целым числом циклов. В таком случае определение цикла как операции самокопирования сети, при которой копируются все клаттеры, имеющиеся в наличии в момент входа в цикл, должно быть расширено. А именно: некоторые такие операции первого этапа, завершающие звено (или находящиеся внутри него), могут быть неполными или избыточными и тем не менее такие операции будут считаться циклами.

Возвратимся теперь к нашему примеру, сколько все-таки следует взять циклов: 28 или 29?

Здесь возможны четыре варианта: 1) По минимуму: отдаем остаток 4 носителя 28-му циклу или распределяем его по каким-то предыдущим, при этом получаем 28 циклов, на некоторых из которых будет скопировано более девяти носителей; т. е. носители некоторых клаттеров в процессе цикла будут скопированы дважды. 2) По максимуму: добавляем еще один 29-й цикл и переносим в него весь остаток, при этом некоторые носители оказываются в данном цикле нескопированными. 3) Этот вариант среднее между первым и вторым: если остаток меньше или равен половине квадрата размера сети (32/2 = 4,5) выбирается первый вариант, в противном случае – второй. 4) Возможен также сценарий «с перехлестом», при котором звено копирования замыкается не в момент завершения цикла, а где-то у него внутри. После прокладки дополнительной связи следующее звено начинается с нескопированных носителей предыдущего (плюс один носитель).

При подсчете полного числа циклов (и числа циклов роста сети до ее гармонического размера) все рассмотренные сценарии финализации звена дают практически одинаковые результаты. Для определенности выбираем второй вариант, получаем 29 циклов. Собираем второй клаттер, устанавливаем в сеть, прокладываем связи.

вернуться

9

В приложении этой математической модели к росту населения Земли можно предположить, что на каждом клаттере копируются некоторые «продвинутые» клаттеры-носители, т. е. «продвинутые» СИС-ы в данной упрощенной модели не имеющие ранга и являющиеся сетеобразующими клаттерами сети ранга нуль. К этим СИС-ам прикрепляются дозревшие (дети) или по какой-либо причине открепленные (кома, клиническая смерть…) материальные носители из растущей мировой демографической системы.

15
{"b":"758909","o":1}