Литмир - Электронная Библиотека
Содержание  
A
A

1.9 Экспериментальный подход к исследованию процессов переноса

Как следует из вышеизложенного, расчеты процессов микро- и макропереноса достаточно сложны, т. к. необходимо решать систему уравнений в частных производных, причем расчеты конвективного переноса массы, теплоты и количества движения значительно сложнее молекулярного переноса. Решение такой системы уравнений возможно в ряде частных случаев, а в общем случае возможно только численными методами и поэтому прибегают к использованию эмпирических зависимостей.

Так для расчета процессов теплопереноса используют эмпирический коэффициент теплоотдачи , равный отношению потока тепла q к разности температур Δt. Тогда тепловой поток равен:

Макрокинетика сушки - _53.jpg

Распределение температур от одной среды к другой в стационарной теплопередаче (постоянство во времени потока тепла q) через стенку толщиной δ с коэффициентом теплопроводности приведено на Рис. 1.5.

Применяя уравнение (1.29) для 1-й и 2-й среды, с учетом теплопроводности через стенку толщиной δ и общего коэффициента теплопередачи К, получим равенство выражений для стационарного теплового потока:

Макрокинетика сушки - _54.jpg

Рис. 1.5. Распределение температур при теплопередаче через стенку.

Макрокинетика сушки - _55.jpg

С учетом этих соотношений получим уравнение:

Макрокинетика сушки - _56.jpg

Физический смысл соотношения (1.31) заключается в том, что общее сопротивление теплопередачи через стенку 1/К равно сумме сопротивления переноса тепла от 1-й среды к стенке 1/α1, термосопротивления стенки δ/ и сопротивления переноса тепла от стенки ко 2-й среде 1/α2.

Аналогично для расчета процессов массопереноса используют эмпирические коэффициенты массопереноса К и массоотдачи .

Распределение концентраций вещества в стационарной массопередаче через поверхность раздела фаз от одной среды (газовая) к другой (жидкая) приведено на Рис. 1.6.

Коэффициенты массоотдачи для обеих сред могут быть найдены из выражения диффузионного потока, как выражения потока массы М на единицу поверхности:

Макрокинетика сушки - _57.jpg
Макрокинетика сушки - _58.jpg

Значения концентраций на границе xs и уs трудноопределимы, поэтому записывают другое выражение диффузионного потока для коэффициентов массопереноса для первой среды К1 и для второй К2 через соответственно равновесные концентрации x* и y*.

Макрокинетика сушки - _59.jpg

Рис. 1.6. Распределение концентраций при массопередаче через поверхность раздела фаз.

Макрокинетика сушки - _60.jpg

Обычно принимают линейный закон (m – константа равновесия, тангенс угла наклона линии равновесия) для определения равновесных концентраций на границе [6]:

Макрокинетика сушки - _61.jpg

Из очевидного равенства:

Макрокинетика сушки - _62.jpg

находим с учетом (1.32) и (1.33):

Макрокинетика сушки - _63.jpg

К1 – коэффициент массопереноса по газовой фазе.

Физический смысл соотношения (1.36) заключается в том, что общее сопротивление процесса массопередачи через межфазную поверхность 1/К1 равно сумме сопротивления переноса вещества от 1-й среды к межфазной поверхности 1/1 и сопротивления переноса вещества от межфазной поверхности ко 2-й среде m/2.

Аналогично можно получить закон сложения сопротивлений для коэффициента массопереноса по жидкой фазе:

Макрокинетика сушки - _64.jpg

Сложность расчета по уравнениям (1.33) – (1.36), особенно в системах с подвижной поверхностью раздела фаз, заключается в том, что часто точно неизвестна ни поверхность раздела фаз, ни значения концентраций на ней, ни коэффициенты массопереноса.

Эмпирические коэффициенты тепло- и массоотдачи определяют на основании экспериментов, обработка которых проводится в виде критериальных зависимостей (зависимости между безразмерными параметрами), полученных на основании теории подобия.

1.10 Основы теории подобия

Экспериментальные исследования более удобно и экономически выгоднее проводить не на больших объектах, а на их моделях. Затем с помощью теории подобия можно распространить полученные на моделях опытные закономерности на подобные объекты другого масштаба.

Исходной предпосылкой теории подобия служит то, что подобные явления описываются одинаковыми уравнениями. Выше были рассмотрены общие уравнения переноса массы, тепла и количества движения. На практике приходится иметь дело с конкретными объектами моделирования и поэтому необходимо сформулировать условия, выделяющие рассматриваемое явление из общего класса явлений (условия однозначности). К ним относятся геометрическая форма и размеры системы (трубы, аппарата и т. д.), физические свойства ее (плотность, вязкость среды и др.), начальные условия (начальная скорость, температура и т. д.) и граничные условия, характеризующие свойства системы на ее границах.

Соотношения между сходственными величинами образца и модели называются константами (масштабами) подобия. Так для геометрического подобия – подобия геометрических размеров образца (l’ – длина, b’– ширина, h’– высота) и соответствующих размеров модели – l”, b”, h” получим константу геометрического подобия

Макрокинетика сушки - _65.jpg

Из этого выражения можно записать инварианты (симплексы) подобия, записав отношения параметров для образца и для модели, например:

Макрокинетика сушки - _66.jpg

Для подобия физических величин имеем константы подобия, например для кинематической вязкости и плотности:

Макрокинетика сушки - _67.jpg

При моделировании процессов, связанных с изменением свойств системы во времени (нестационарных) должно соблюдаться временное подобие, тогда константа временного подобия:

Макрокинетика сушки - _68.jpg

Константы кинетического подобия включают отношение скоростей u и ускорений a в сходственных точках объекта и модели:

Макрокинетика сушки - _69.jpg

Следует отметить, что подобие кинетическое (подобие планов скоростей и ускорений) может иметь место только при наличии подобия геометрического.

6
{"b":"749964","o":1}