Литмир - Электронная Библиотека

Рис. 1.2. Виды искусственного интеллекта в общей системе понятий ИИ.

– Слабый ИИ – то, что уже удалось создать. Такой ИИ способен решать определённую задачу, зачастую даже лучше, чем человек.

– Сильный ИИ – способность машины учиться, мыслить, чувствовать, осознавать себя и принимать решения.

– Суперинтеллект – не только не создали, но и не имеем пока что ни малейшего представления, как это сделать и можно ли вообще. Это не просто умные машины, а компьютеры, которые во всём превосходят людей.

Машинное обучение

Машинное обучение – это один из разделов науки об ИИ. Здесь используются алгоритмы для анализа данных, получения выводов или предсказаний в отношении чего-либо.

Для принятия решения необходимо:

– Алгоритм – специальная программа, которая говорит компьютеру, что делать и откуда брать данные.

– Набор данных – примеры, на которых машина тренируется.

– Признаки – то, на что компьютеру смотреть при принятии решения.

Алгоритмы машинного обучения

– Линейная регрессия – применяют, если есть линейная зависимость между переменными.

– Байесовские алгоритмы – применение теоремы Байеса и теории вероятности.

– Нейронные сети – один из методов глубокого обучения.

Глубокое обучение

– Глубокое обучение – подраздел машинного обучения. Алгоритмам глубокого обучения не нужен учитель, только заранее подготовленные данные.

– Нейронные сети – математические модели, созданные по аналогии с биологическими нейронными сетями. Они способны моделировать и обрабатывать нелинейные отношения между входными и выходными сигналами.

Искусственные нейронные сети

Курс Интеллектуальные средства автоматизации. Модуль Конспект лекций и концепт-карты основных тем - _2.jpg

Рис. 1.3. Модель ИНС

Итоги:

Искусственный интеллект – одновременно и наука, которая помогает создавать «умные» машины, и способность компьютера обучаться и принимать решения.

Машинное обучение – одна из областей искусственного интеллекта. МО использует алгоритмы для анализа данных и получения выводов.

Глубокое обучение – лишь один из методов машинного обучения, в рамках которого компьютер учится без учителя сама с помощью данных.

Проблемы искусственного интеллекта

Искусственный интеллект сейчас находится в основном на уровне слабого интеллекта. Например, нет возможности уверенно и точно распознавать ограниченные образы.

Курс Интеллектуальные средства автоматизации. Модуль Конспект лекций и концепт-карты основных тем - _3.jpg

Рис. 1.4. Проблема распознавания образов в ИИ

Будущее ИИ

1. ИИ станет умнее человека.

2. ИИ может диагностировать и чинить себя.

3. Питомцы с ИИ

5. О запрете использования ИИ в военных целях

6. Наутилус – электронный Нострадамус

7. Компьютеры, обучающие сами себя

8. Индустрии будущего на основе ИИ

Карта памяти Основные понятия искусственного интеллекта

Курс Интеллектуальные средства автоматизации. Модуль Конспект лекций и концепт-карты основных тем - _4.jpg

Рис. 1.5. Карта памяти темы Основные понятия Искусственного интеллекта

1.2. Принципы построения систем с искусственным интеллектом

Курс Интеллектуальные средства автоматизации. Модуль Конспект лекций и концепт-карты основных тем - _5.jpg

Рис. 1.6. Принципы построения систем управления с искусственным интеллектом

Принципы построения самообучающихся систем на основе нейронных сетей

Общие понятия о самообучающихся системах

Самообучающаяся система – это интеллектуальная информационная система, которая на основе примеров реальной практики автоматически формирует единицы знаний.

Примеры реальных ситуаций за некоторый период времени и составляют обучающую выборку. В результате обучения автоматически строятся обобщенные функции или правила. Они определяют принадлежность ситуаций классам, которыми в дальнейшем будет пользоваться система. База знаний из обобщающих правил формируется автоматически. После этого по мере накопления она периодически корректируется.

Виды самообучающихся систем

Различают следующие виды самообучающихся систем:

Индуктивные системы – это самообучающиеся интеллектуальные информационные системы, которые работают на принципе индукции. Они осуществляют классификацию примеров по значимым признакам.

Системы, основанные на прецедентах – это самообучающиеся интеллектуальные информационные системы, которые в качестве единиц знаний хранят прецеденты решений (примеры). По запросу они позволяют подбирать и адаптировать наиболее похожие прецеденты. В таких системах база знаний содержит описания не обобщенных ситуаций, а сами ситуации или прецеденты. Поиск решения проблемы сводится к поиску по аналогии.

Информационные хранилища – это самообучающиеся интеллектуальные информационные системы, которые позволяют извлекать знания из баз данных и создавать специально-организованные базы знаний.

Нейронные сети – это самообучающиеся интеллектуальные информационные системы, которые на основе обучения по реальным примерам, строят ассоциативную сеть понятий (нейронов) для параллельного поиска на ней решений.

Понятие о нейронной сети

Нейронная сеть – параллельная распределенная структура обработки информации, которая состоит из обрабатывающих информацию элементов (нейронов), соединенных между собой сигнальными каналами (связями).

Каждый нейрон имеет одну выходную связь, которая может разветвляться и соединять его с другими элементами сети. Выходной сигнал элемента может быть любой математической формы.

Курс Интеллектуальные средства автоматизации. Модуль Конспект лекций и концепт-карты основных тем - _6.jpg

Рис. 1. 7. Модель нейронной сети

Структура нейросети

Внешне структура нейронной сети напоминает структуру биологической нейронной сети. Часть терминологии в данной области появилась из нейронауки, которая исследует мозг и память.

Мозг состоит из нейронов, которые являются малыми единицами обработки информации. Природный нейрон состоит из тела клетки с ядром и протоплазмой, одного или нескольких дендритов, проводящих импульсы к нейрону, и аксона, выводящего импульс из нейрона.

Курс Интеллектуальные средства автоматизации. Модуль Конспект лекций и концепт-карты основных тем - _7.jpg

Рис. 1.8. Биологический нейрон

Между окончанием аксона и началом дендритов других нейронов находится пространство – синапс. Через него импульсы с аксона передаются на дендрит другого нейрона. Такую связь называют синаптической: Синапс – точка соединения, где дендриты принимают сигналы. Уникальными способностями нейрона считается прием, обработка и передача по нейронной сети электрохимических сигналов.

Импульсы через синапс способны проходить только в одном направлении. При получении импульса нейрон начинает оценивать его силу. Одни импульсы игнорируются, другие пытаются возбудить нейрон, некоторые препятствуют этому. Эффект действия всех полученных импульсов суммируется. Если суммарный эффект превышает некоторый порог, то нейрон возбуждается, выдавая импульс на выход, т.е. посылает по аксону сигнал другим нейронам.

3
{"b":"748816","o":1}