Чем более высокого порядка ящиками располагает модель, тем точнее она осуществляет вероятностное прогнозирование, тем более длинные планы действий можно строить. Но это дается ценой значительно большей громоздкости памяти и «перебора» при выборе из памяти. Число ящиков в модели сильно увеличивается при возрастании их высшего порядка (n).
При том же числе т возможных событий (т. е. таких событий, которые наступили хоть раз в жизни модели) модель может содержать: ящиков первого порядка – т, ящиков второго порядка – m2, ящиков третьего порядка – m3,, ящиков n порядка – mn.
Так что в простой среде пользоваться ящиками высоких порядков нецелесообразно: процедура прогнозирования становится громоздкой и длительной, а выигрыш в точности может быть малым или даже совсем отсутствовать (если, например, среда представляет собой бернуллиеву последовательность, т. е. случайную последовательность, в которой вероятность возникновения того или иного события не зависит от предшествовавшего события).
Здесь мы сталкиваемся с тем, что стремление улучшить вероятностное прогнозирование приводит к чрезвычайно громоздкой модели памяти. А нельзя ли каким-либо образом несколько разгрузить память, не ухудшая результатов вероятностного прогнозирования? Нельзя ли запоминать не все в равной степени и даже кое-что совсем не запоминать? Вслед за этим сразу же возникает другой вопрос: что именно надо запоминать более основательно, чтобы сохранить способность к вероятностному прогнозированию?
Пусть наша модель запоминает не все, что поступит на ее вход, с одинаковой глубиной. До сих пор блок памяти системы имел на входе сигналы («внешние события»), а на выходе, в качестве конечного продукта, – вероятностный прогноз, который мог быть использован следующими блоками, осуществляющими преднастройку. Теперь же и сам блок памяти должен будет использовать свой «продукт» – прогноз.
Если произошло событие А, то с помощью ящика «А» подсчитывается Р(А) – вероятность того, что снова произойдет А, Р(В) – вероятность того, что наступит событие В…, Р(К) – вероятность того, что наступит событие К. Это и есть вероятностный прогноз.
Предположим, что после этого наступило событие Y – событие, вероятность наступления которого, согласно прогнозу, равнялась P(Y). Теперь, как мы уже писали выше, следует поставить карточку Y в ящик А. Но карточка ставится с разным «весом» в зависимости от степени неожиданности события Y, она ставится с коэффициентом 1— P(Y).
Назовем эту величину коэффициентом неожиданности. Если в прошлом опыте после А всегда следовало Y, то Р(Y) = 1 (субъективная «модель среды» точно соответствует среде). Тогда 1—Р(Y) = 0, т. е. повторно наступившее событие Y не запоминается, не загружает память. В жестко детерминированной среде модель перестает запоминать, как только «научается» безошибочно прогнозировать ход событий. Но, если среда изменится и наступит не то событие, которое прогнозировалось, это событие врежется в память с максимальным коэффициентом неожиданности 1–0 = 1. Каждое событие запоминается тем сильнее (т. е. оказывается труднее забываемым), чем более неожиданным (удивительным) было возникновение его в данный момент.
Вероятности ожидания сигналов или ситуаций могут меняться от Р = 1 до очень маленьких величин. Всегда ли субъект учитывает все значения вероятностей или он может работать более экономно?
Можно предположить, что преднастройка осуществляется лишь по отношению к действиям, адекватным такой ситуации, возникновение которой прогнозируется с вероятностью, превышающей некоторую минимальную величину Р0. Величина Р0 играет роль абсолютного порога вероятностного прогноза. К ситуациям, появление которых прогнозируется с вероятностью меньшей, чем Р0 преднастройка не осуществляется. Если Р0 = 1/10 (а из экспериментальных данных вытекает, что это примерно так), то при наличии равновероятных сигналов вероятностный прогноз достигает пороговой величины Р0 лишь при числе сигналов до 10; при большем числе сигналов вероятностный прогноз появления каждого из них меньше порогового. Если же сигналы возникают с неодинаковыми вероятностями, то среди них могут оказаться сигналы с Р>0,1, но число таких сигналов будет всегда меньше 10 – независимо от общего числа сигналов. А это значит, что, как бы велико ни было число возможных сигналов, при наличии порога Р0 организм упрощает ситуацию так, как будто число возможных сигналов не больше, чем 1/Р0 (т. е. не более 10 в приводимом примере). Наличие порога Р0 позволяет при большом общем числе альтернатив принимать во внимание при прогнозировании лишь небольшую часть (не более 1/Р0) наиболее вероятных альтернатив.
Различие в подготовке к действиям на два сигнала наблюдается лишь тогда, когда различие прогнозируемой вероятности появления этих сигналов достаточно велико, больше некоторого ΔР – дифференциального вероятностного порога. В частности, для выработки условного рефлекса выработка прогноза с Р = 1 не является необходимой (такая ситуация практически недостижима даже в эксперименте); достаточно, чтобы прогнозируемая вероятность подкрепления была близкой к единице (Р≥1–ΔР).
Описанная структура памяти отражает лишь одну ее сторону, но именно ту, которая позволяет понять, как из прошлого опыта создается прогноз будущего, как осуществляется вероятностное прогнозирование.
Подготовка к действию и значимость сигнала
В приведенной выше структуре памяти в основу прогноза кладется частота (вероятность) возникновения событий и их сочетаний. При этом другие характеристики событий принимаются одинаковыми. Между тем ясно, что в действительности и преднастройка, и реакция субъекта на события сильнейшим образом зависят от значимости этого события для субъекта. Рассмотренная выше ситуация, когда все события принимаются как равные по значимости, является искусственной – удобной для первоначального исследования, но отличной от ситуации в реальной жизни. Очевидно, что сообщение о том, что этажом ниже возник пожар, вызовет совсем иную по силе и быстроте реакцию, чем сообщение о том, что этажом ниже ветер выбил стекло в окне – даже в том случае, если априорная вероятность этих сообщений одинакова. Равновероятные события могут вызвать очень различную преднастройку и различные реакции. Два разных субъекта различно реагируют на одну и ту же ситуацию даже при одинаковой неожиданности ее возникновения, если эта ситуация имеет для них различную значимость.
Значимость – величина субъективная, различная для разных субъектов, да и для одного и того же субъекта меняющаяся в зависимости от различных обстоятельств и прежде всего от целей субъекта. Дать определение значимости очень трудно; вместе с тем реальность ее существования и влияния на реакции субъекта не вызывает никакого сомнения. Совокупность значимостей, достаточно постоянных для данного субъекта, составляет существенную характеристику его личности. Это выявляется в его индивидуальных реакциях, в его системе предпочтений. Так, один предпочитает провести вечер на концерте Баха, а другой – за столом с приятелями. Но, чтобы сравнить то и другое и решить вопрос о предпочтении, надо измерить предпочитаемые вещи в сравнимой системе единиц. Поскольку каждый осуществляет такое сравнение, можно предположить, что у субъекта имеется некая единая шкала оценки значимости для различных ситуаций. Такая шкала напоминает деньги – всеобщий эквивалент, единую систему для оценки самых различных предметов и благ, дающую возможность сравнивать их. Только наличие такой единой шкалы (меры) может обеспечить систему индивидуальных предпочтений, выборов. Мы здесь не будем рассматривать, как формируется индивидуальная система значимостей. Ясно, что она связана с опытом, включая воспитание, влияние социальной среды.