Литмир - Электронная Библиотека
A
A
(ускорение) = (сила) / (масса)

или иначе

(ускорение) × (масса) = (сила).

Отсюда немедленно следует, что если к телу не приложена сила, то нет и ускорения, то есть скорость не меняется; значит, если тело двигалось, оно продолжит двигаться с постоянной скоростью, а если покоилось – останется в неподвижном состоянии.

Эти концепции, хотя и довольно точные, в некотором смысле отличаются от их расхожих смыслов, поэтому ради прояснения их значений стоит проделать несколько мысленных экспериментов. Вообразите, например, что вы катите по земле очень большой деревянный шар, который под действием этой силы катится все быстрее и быстрее. Если теперь вы его отпустите, он будет какое-то время катиться с постоянной скоростью, пока другая сила, например, сила трения, не замедлит его движение[17]. Теперь вообразите, что вы точно так же толкнете чугунный шар того же размера. Если вы приложите то же усилие, чугунный шар будет катиться гораздо медленнее, чем деревянный. Действительно, его масса много больше, так что если приложить ту же силу, возникшее ускорение будет много меньше. Теперь допустим, что у вас есть двойник, который, видя ваши мучения с чугунным шаром, приходит вам на помощь. Вы вместе с двойником, прикладывая одинаковые усилия в течение того же времени, что и в предыдущем случае, можете заставить чугунный шар двигаться вдвое быстрее: вы удвоили силу, и, следовательно, ускорение тоже удвоилось.

Определив математически ускорение, массу и силу, а также закон, связывающий их, Ньютон показал, что движения тел можно рассчитать точно, если знать три параметра: начальные положение и состояние движения каждого тела, массу каждого тела и силу, с которой каждое тело действует на все другие тела. В коане «СТРЕЛА» мы обсудили, как можно, хотя бы в принципе, измерить положения тел и их скорости. Для определения положения мы измеряем их расстояние до фиксированного предмета. После этого мы определяем их скорости, для чего находим, насколько далеко они переместятся за короткое время. Ну, а как насчет их масс и сил?

Когда мы сравнивали реакцию чугунного и деревянного шаров на одну и ту же силу, мы как раз и сравнивали их инерционные массы (инерции). Если под действием одной и той же силы деревянный шар ускоряется в 10 раз быстрее, чем чугунный, мы можем заключить, что его масса в 10 раз меньше. И если мы возьмем одно «стандартное» тело, массу которого примем за единицу, тогда массы других тел мы можем измерять в этих единицах, сравнивая их ускорение с ускорением нашего стандартного тела. Таким образом, даже если мы точно не знаем, что такое масса, ее измерение (в любом случае относительно какого-то стандарта) – не такое уж сложное дело.

И наконец, как обстоит дело с силами? Есть силы, хорошо нам знакомые – например, сила, с которой человек толкает предмет, или же сила ветра, обдувающего тело. Другой известный пример – магнитные силы. Представьте себе, что вы держите огромный подковообразный магнит и подносите его к чугунному шару. Медленно, но верно чугунный шар под действием магнита покатится к вам. Если же вы поднесете два одинаковых магнита вместо одного, он покатится вдвое быстрее. А вот на деревянный шар ваш магнит не подействует. Такое впечатление, что магнитная сила, действующая на предмет, зависит от его внутренних свойств – в том числе от состава, от количества материала, из которого предмет состоит, и даже от его температуры. Это свойство можно назвать его магнитным зарядом.

И теперь мы подходим к гравитационной силе, которая привязывает нас к земной поверхности и заставляет предметы падать с башен. Хотя для понимания истинной природы гравитации пришлось ждать Ньютона, а потом и Эйнштейна, Галилей понял про нее две существенные вещи. Во-первых, она тянет тела вниз, к центру Земли. Мы можем назвать эту способность Земли притягивать тела к своему центру ее гравитационным полем. Во-вторых, как и в случае с магнетизмом, сила гравитации зависит от внутренних свойств тел, которые мы можем назвать их гравитационными зарядами. Гравитационный заряд, умноженный на гравитационное поле, дает силу, с которой тело притягивается к Земле, то есть, другими словами, – его вес. (Однако смысл последних двух понятий нужно различать: например, если вас удалить с Земли, ваш гравитационный заряд сохранится, а вес – нет.)

Теперь, вооружившись знаниями, мы можем вернуться назад и проанализировать проблему, сформулированную Галилеем: определить, какой шар будет падать быстрее – чугунный или деревянный. Чугунный шар притягивается к Земле с большей силой (из-за его большего гравитационного заряда и, следовательно, большего веса), но двигаться (из-за его большей массы) ему тяжелее, чем деревянному шару. Какое обстоятельство победит?

Пусть ответ нам даст ньютоновская механика. Если сила равна ускорению, умноженному на инерционную массу, и если на тела действует сила, равная их гравитационному заряду, умноженному на внешнее гравитационное поле, то есть:

(сила) = (гравитационный заряд) × (гравитационное поле),

то, объединяя эти два выражения, получаем

(ускорение) × (инерционная масса) = (сила) = (гравитационное поле) × (гравитационный заряд)

или иначе:

(ускорение) = (гравитационное поле) × (гравитационный заряд) / (инерционная масса).

Это позволяет нам определить ускорение любого объекта, если известно гравитационное поле и два свойства, присущие объекту: отклик объекта на гравитационное поле (гравитационный заряд) и его способность сопротивляться ускорению (инерция или инерционная масса).

Космологические коаны. Путешествие в самое сердце физической реальности - i_004.png
Космологические коаны. Путешествие в самое сердце физической реальности - i_005.png
Космологические коаны. Путешествие в самое сердце физической реальности - i_006.png

Пути шаров в пространстве-времени под воздействием разных сил: магнитной, силы ветра и гравитационной.

Гравитационное поле везде на Земле более-менее одинаково. Но без дополнительной информации о том, как гравитационные заряды объектов соотносятся с их массами, ответить на вопрос Галилея представляется невозможным: объекты, у которых при заданной массе сравнительно больший гравитационный заряд, должны ускоряться быстрее, а те, у кого меньший – медленнее.

Похоже, мы в тупике. Ведь эксперимент Галилея (а также его последователей) говорит о том, что если мы сможем убрать все негравитационные силы, окажется, что в заданном гравитационном поле все объекты приобретают одно и то же ускорение. Если это правильно, тогда гравитационный заряд и инерционная масса должны совпадать! Другими словами, дополнительные трудности по перемещению чугунного шара в точности, идеально[18] компенсируются дополнительной силой притяжения его к Земле! Это несправедливо в отношении магнетизма или любой другой силы.

Данный поразительный факт оставался по существу необъясненным в течение 300 лет, пока Альберт Эйнштейн не показал, что этому есть глубокая причина и что ее объяснение требует от нас радикально изменить наше отношение к пространству и времени. Вспомним коан «СТРЕЛА», из которого мы узнали, что когда нет никаких сил, объекты движутся по прямой с постоянной скоростью. Другими словами, если не приложены никакие силы, объекты движутся по прямой в пространстве-времени. Чтобы увидеть это, давайте построим траектории шаров так же, как мы сделали это для стрелы. До тех пор, пока шар катится с постоянной скоростью в одном направлении, его путь в пространстве-времени остается прямолинейным. Но если шар ускоряется (например, если мы поставили перед ним магнит), он за одинаковые интервалы времени будет продвигаться на все большее и большее расстояние и его путь в пространстве-времени искривится, а путь деревянного шара, на который магнитная сила не действует, останется прямолинейным (верхний рисунок на стр. 52). Мы также можем вообразить, что на шары подул сильный ветер. В этом случае на шары действует одинаковая сила, но у деревянного шара наименьшая масса и он максимально подвержен действию ветра; свинцовый же шар будет ускоряться меньше всего (нижний рисунок на стр. 52). А гравитационное поле Земли притягивает все три шара и ускоряет их. Разница с предыдущими случаями, как установил Галилей, состоит в том, что в этом случае все три кривые искривляются одинаково (рисунок на стр. 53).

вернуться

17

Качение объектов в действительности немного сложнее, чем мы здесь изобразили, но для наших целей можно считать, что поведение этих объектов по существу такое же, как если бы они просто скользили. Галилей фактически тоже использовал катящиеся шары в своих экспериментах, исключив некоторые усложняющие изложение сложности. В качестве особого бонуса для тех, кто немного разбирается в ньютоновской механике и любит читать сноски, привожу забавный парадокс: почему вращающийся шар в конце концов перестает катиться? Чтобы замедлился центр масс шара, к нему должна быть приложена сила (со стороны земли), действующая в направлении, противоположном общему направлению движения шара. Но сила в действительности приложена не к центру масс, а к точке на поверхности шара, и, следовательно, она создает крутящий момент, причем в таком направлении, что шар должен был бы закручиваться быстрее. Но более быстрое вращение означало бы более быстрое качение. В чем тут противоречие?

вернуться

18

Со времен Галилея ученые доказали эквивалентность инерционной массы и гравитационного заряда с точностью большей одной триллионной, см. С. М. Will. The Confrontation between General Relativity and Experiment // Living Reviews in Relativity 4, no. 1 (2001): art. 4.

8
{"b":"734061","o":1}