Литмир - Электронная Библиотека
A
A

Разработано уже 3 поколения панелей из аморфного кремния, рис. 2.4, анализ характеристик которых дает право говорить о растущем КПД. Первые образцы отличались эффективностью, едва достигавшей 5%, у второго поколения это значение достигало 9, а у последних разработок это уже 12%.

Панели из аморфных кремниевых пластин имеют следующие преимущества:

–гибкая основа, упрощающая монтаж и расширяющая область использования;

–в рассеянном свет высокий КПД;

–стабильность при высокой температуре;

–устойчивость к повреждениям механического характера;

–независимость от загрязнений.

Конструкции и монтаж фотоэлектрических модулей - _4.jpg

Рис.2.4. Панель из аморфных кремниевых пластин

При правильной эксплуатации они служат не менее 20 лет, в течение этого времени падение мощности составляет 15-20%.

Их рекомендуется использовать там, где часто наблюдается облачная и пасмурная погода. Они будут неплохо работать в условиях рассеянного или отраженного света. Также годятся они и для жаркого климата, так как лучше переносят нагревание и теряют при этом меньше мощности. Единственным минусом считается потребность в большой площади.

Теллурид кадмия считается лучшим однопереходным полупроводниковым материалом по совокупности трех показателей – поглощающая способность, надежность, стоимость. CdTe значительно производительнее кремния и намного дешевле более эффективных пленок на базе дорогостоящих германия и индия.

Подложка пленки может быть не металлической, а стеклянной, а сами ячейки – полужесткими или гибкими. CdTe отличается стабильностью, долговечностью, малой чувствительностью к изменению освещения и быстро растущим КПД новых поколений модулей.

Несмотря на то, что кадмий является токсичным веществом, его использование компенсируется вторичной переработкой материала. Тем не менее, озабоченность по этому поводу все еще существует, и поэтому широкое применение этой технологии ограничено.

Особенность строения солнечных панелей типа CIGS заключается в том, что они созданы на сульфидах редкоземельных элементов путем композитного смешения галлия, индия и меди. Такие панели являются «чемпионами» по КПД и стойкости, но стоят очень дорого.

Коммерческое применение пока ограничено только космосом и авиационной отраслью, поскольку добыча индия и галлия на планете ограничена всего несколькими сотнями тонн в год. Даже если бы все они пошли на изготовление батарей, общая мощность панелей едва достигла бы 10 ГВт.

В практике нашли применение гибридные панели, в которых объединены аморфный кремний и монокристаллы. По параметрам панели похожи на поликристаллические аналоги, рис.2.5.

Конструкции и монтаж фотоэлектрических модулей - _5.jpg

Рис.2.5. Гибридные панели

Особенность гибридных панелей – лучшее преобразование солнечной энергии в условиях рассеянного света.

2.2.3. Третье поколение фотоэлементов

Третье поколение фотоэлементов также относятся к тонкопленочным технологиям, однако они лишены привычного понятия p-n перехода. Идея создания фотоэлементов третьего поколения заключалась в дальнейшем снижении их себестоимости, отказе от использования дорогих и токсичных материалов в пользу дешевых и перерабатываемых полимеров и электролитов. Важным отличием также является возможность нанесения слоев печатными методами, например, по технологии «рулон-к-рулону» (R2R). В настоящее время основная часть проектов в области фотоэлементов третьего поколения находятся на стадии исследований.

Третье поколение фотоэлементов включает в себя новейшие развивающиеся технологии, к которым относятся:

–фотоэлементы с квантовыми точками,

–фотоэлементы, сенсибилизированные красителем,

–фотоэлементы на основе полимеров,

–фотоэлементы на основе перовскита.

Перспективный вид батарей ближайшего будущего построен на свойствах физических квантовых точек – микроскопических включений полупроводников в тот или иной материал. Геометрически такие «точки» имеют размер в несколько нанометров и распределяются в материале так, чтобы охватить поглощение излучения всего солнечного спектра – ИК, видимого света и УФ. Огромным преимуществом подобных панелей является возможность работать даже ночью, генерируя около 40% максимальной дневной мощности.

Солнечные элементы с квантовыми точками (QD) состоят из нанокристаллов полупроводника на основе переходного металла. Нанокристаллы смешиваются в растворе и затем наносится на кремниевую подложку. Как правило, фотон будет возбуждать электрон там, создавая единую пару электронных дырок в обычных сложных полупроводниковых солнечных элементах. Однако, если фотон попадает в QD определенного полупроводникового материала, может быть произведено несколько пар (обычно две или три) электронных дырок.

Солнечные элементы, сенсибилизированные красителями (DSSC), были впервые разработаны в 1990-х годах и имеют многообещающее будущее. Они работают по принципу искусственного фотосинтеза и состоят из молекул красителя между электродами. Эти элементы экономически выгодны и имеют преимущество легкой переработки. Они прозрачны и сохраняют стабильность и твердое состояние в широком диапазоне температур. Эффективность этих ячеек достигает 13%.

Перспективными считаются фотоэлементы на основе мезопористых (с наноразмерными порами) оксидных полупроводников, покрытых органическим красителем. Эти ячейки прославили имя профессора и получили название «ячейки Гретцеля». Они используют принцип, похожий на органический фотосинтез: поглощение квантов света молекулами органического красителя и протекание окислительно-восстановительных реакций при облучении солнечным светом. На рис.2.6. схематично приведено устройство ячейки Гретцеля. Конструктивно простейшая ячейка Гретцеля состоит из пластинки оптически прозрачного стекла с токоприемниками и электропроводящим покрытием, на которую нанесен слой из высокопористого диоксида титана, являющегося полупроводником. Поры диоксида титана пропитаны специальным органическим красителем, выделяющим электроны под воздействием солнечного света.

Конструкции и монтаж фотоэлектрических модулей - _6.jpg

Рис.2.6. Принципиальная схема фотоэлектрической ячейки Гретцеля

Пластина, на которую нанесён диоксид титана – это анод ячейки. Катодом ячейки является противоположный электрод, который обычно называют противоэлектродом–это токопроводящая подложка другой пластины, на которую в прототипе ячейки был нанесён платиновый подслой– катализатор. Между электродами – токопроводящий электролит (в первоначальном варианте – трийодит в жидкой форме). Принцип работы такого фотоэлемента следующий. Свет проходит через прозрачную подложку и поглощается фотоактивным красителем. Далее эти электроны диффундируют через слой полупроводника к прозрачному проводящему электроду (токоприёмнику) за счет градиента концентрации. Электролит замыкает электрическую цепь и позволяет подходить электронам от катода с платиновым покрытием к полупроводнику, где происходит рекомбинация электронов и «дырок». Таким образом, при достижении порогового значения количества выделяемых электронов образуется электрический ток, который течет от верхнего слоя ячейки к нижнему. Ячейка Гретцеля принципиально отличается от классических фотобатарей на основе кремния. Полупроводник диоксид титана выполняет исключительно роль среды, в которой происходит транспорт (диффузия) фотоэлектронов, генерируемых фотовозбужденным красителем. В кремниевых фотоэлементах полупроводник кремний выполняет двойную функцию – генерирует фотоэлектроны и является средой для транспорта электронов. В ячейке Гретцеля краситель, выступая в роли фотосенсибилизатора (т.е. вещества с увеличенной чувствительностью к воздействию света), играет главенствующую, доминирующую роль, а остальные компоненты –анод из диоксида титана, электролит, катод – играют вспомогательную роль. Работа такой ячейки часто сравнивается с фотосинтезом, поскольку оба процесса используют пигменты и окислительно-восстановительную реакцию, протекающую в электролите.

5
{"b":"716984","o":1}