Новации, о которых в данном случае идет речь, имеют бытийный характер. Они преобразуют мир науки, которая проявляет себя как область реального созидания. Ее новшества - это не продукт какой-то забавы или полудетской игры. Созидательный процесс в науке конструктивен и необратим. Он ведет к существенным переменам в субъекте научной деятельности. Каждое новое поколение ученых и мыслит, и действует иначе, нежели прежние поколения, оно по-другому строит отношения внутри науки, а также стремится новаторски формировать связи науки с ее культурным окружением (в том числе с промышленностью, образованием, военным делом и т.д.).
Вместе с тем шаг за шагом, от этапа к этапу меняются средства научной познавательной деятельности; и такие перемены отражаются на состоянии науки в целом. Показательно, что становление современной науки в эпоху нового времени началось с преобразования ее методологической основы (был разработан экспериментальный метод познания, выявлена важная роль в науке индуктивных методов, восстановлен в правах дедуктивно-аксиматический метод построения научных знаний). Стоит, однако, отметить еще одно обстоятельство. С этой эпохи начинается подлинный поход науки за откры-1иями. И этому способствовали многие новые средства, вошедшие в структуру научной деятельности. К ним относятся экспедиции и путешествия, спектр которых неуклонно расширялся, включая уже в наши дни космические путешествия. Новыми средствами познания явились различные приборы и инструменты, установки и оборудование, с помощью которых расширяются и углубляются предметные области исследования современной науки.
Уже ранние шаги современной науки оказались связаны с созданием неизвестных ранее инструментов. К ним относятся телескоп (изобретен и усовершенствован Галилеем) и микроскоп (появился в конце XVII в.). Использовались также часы, приборы для вычисления долготы и широты. Была применена призма для разложения света.
Свой вклад в разработку инструментов научного познания внесла математика (были созданы логарифмические методы вычисления, вариационное исчисление, методы решения математических уравнений, методы исчисления вероятностей, теория функций вещественного переменного и пр.).
Во все последующие эпохи новая инструментально-приборная база стала систематически использоваться для обоснования крупных научных открытий. Можно в этой связи указать на разработанные Фарадеем средства исследования электромагнитной индукции, на применение спектрального анализа (Бунзен, Кирхгоф). Оригинальная исследовательская техника использовалась для доказательства существования электромагнитных волн. Новое лабораторное оборудование потребовалось для доказательства существования рентгеновских лучей, для подтверждения явления радиоактивности. Во многих областях науки важную роль сыграло создание высокоточных оптических приборов для спектроскопических и метрологических исследований (Майкельсон).
Опять же надо упомянуть достижения математики, которая предлагает оригинальные инструменты решения возникающих в науке задач. Так, в физике XX столетия многие принципиальные вопросы получили свое рациональное освещение лишь благодаря новым математическим инструментам исследования. В первую очередь это касается разработки современных представлений о природе пространства-времени. Переломным моментом стало предложенное X. Лоренцем математическое описание трансформационных свойств физического мира Оно известно как «преобразования Лоренца» и включает в свой состав совокупность формул, с помощью которых можно пересчитывать координаты событий, наблюдаемых в одной системе отсчета, на координаты этих же самых событий, определяемых в другой системе отсчета. Итогом соответствующих преобразований стало новое правило сложения скоростей (в сравнении с правилом Галилея), которое можно найти в любом современном учебнике физики. А. Эйнштейн предложил считать преобразование Лоренца фундаментальным законом природы. Из последнего были выведены важные следствия, определяемые как эффект сокращения длины движущегося объекта и эффект замедления времени для движущихся часов в сравнении с покоящимися. Оба эффекта нашли подтверждение в различных экспериментах. В частности, в экспериментах по изучению быстро движущихся пионов было доказано, что «внутренние» часы пионов идут намного медленнее, если на них смотреть из лаборатории, размещенной в конце испытательного туннеля.
Современная физика разрабатывает плодотворные математические описания для решения многих фундаментальных исследовательских задач. Среди мощных математических инструментов стоит упомянуть разработку волнового уравнения Э. Шредингера, приспособленного для описания необычного движения электрона. В нем использовано понятие «волновая функция», которая предполагает распределенную в пространстве плотность вероятности нахождения частицы в пространстве-времени (в элементе некоторого объема). Волновая функция стала полезным инструментом, средством количественного исследования микрофизических явлений Она приспособлена для описания в рамках квантовой механики движения свободной частицы с полной энергией Е и импульсом р. Хорошим объектом применения для теории и уравнения Шредингера стала идеальная модель атома водорода.
Средства познания, применяемые в современной науке, в особенности в ее естественнонаучных областях, существенным образом связаны с процессом технизации науки. От развертывания такого процесса зависит новаторский итог развития научного познания в наше время. Показательно в данном отношении формирование новейшей атомной физики и физики атомного ядра. Конечно, лидирующее положение этой области науки сложилось за счет усилий и теоретиков, и экспериментаторов. Но получение фактического материала, стимулировавшего продвижение теоретической мысли, равно как и проверка теоретических выкладок с помощью экспериментов • ширились на развитую техническую базу. Ее создание само требовало новаторских подходов и решений.
В технической области новое рождается в тесном союзе ученых и инженеров. В свою очередь, инженерный кадровый корпус вовлекается в решение научных задач, возникающих в определенных промай пленных областях. Среди таких задач зачастую фигурируют погрешности в проведении уникальных экспериментальных разработок.
Крупным рубежом, обозначившим указанную ситуацию, стало открытие в науке явления радиоактивности (самопроизвольное деление ядер химических элементов, в результате чего идет превращение одних элементов в другие). Для изучения радиоактивности создаются специфические установки. Кроме того, добыча радиоактивных веществ потребовала переработки больших масс природных веществ, что заставило искать и внедрять в эту область деятельности сложные технологии. Создается также новая техника и технология для изучения искусственной радиоактивности.
Так, в экспериментах, проведенных Э. Ферми и Э. Сегре в 1934 г., осуществлялась бомбардировка нейтронами ядер урана. Облученный уран проявлял при этом искусственную радиоактивность, его ядро распадалось на два ядра примерно одинаковой массы. Выяснилось также, что ядра-фрагменты имеют избыточное число нейтронов и потому оказываются в значительной степени нестабильными, сами испускают часть нейтронов. Было установлено также, что при реакции деления урана выделяется очень большое количество энергии.
В итоге была показана возможность цепной реакции деления с высвобождением громадного количества энергии. Под руководством Э. Ферми в 1942 г. в Чикагском университете был построен «атомный котел», в котором впервые осуществлена самоподдерживающаяся цепная ядерная реакция. Техническая мысль вместе с учеными продвинулась далее к созданию разных типов реакторов, среди которых более эффективными оказались реакторы-размножители, использующие быстрые нейтроны. Их конструируют так, чтобы в течение нескольких лет реактор-размножитель удваивал исходное количество радиоактивного топлива, заложенного в него вначале.
Для изучения структуры атомов и выяснения особенностей взаимодействия атомных частиц были предложены разнообразные высоковольтные электростатические машины, смысл действия которых - создание электрически заряженных ионов и придание им большой скорости движения в соответствующем электрическом поле, что обеспечивало бомбардировку атомов разных веществ, позволяло экспериментально наблюдать ядерные реакции. Первое высокое напряжение, создающее поток ионов с энергией свыше 1 МэВ, было достигнуто на генераторе Ван-де-Граафа в Вашингтоне. Параллельным путем шло создание нового типа машин - циклотронов, бетатронов, линейных ускорителей, синхрофазотронов. В настоящее время работают ускорители, которые могут разгонять протоны до энергий свыше 1000 ГэВ. Исследования на подобных установках привели к открытию новых химических элементов, которые не наблюдаются в естественных условиях Земли.