Важным пунктом воззрений Л. Берталанфи явилось материалистическое определение предмета биологии: «Биология есть наука об организациях, о «живых» природных вещах».[7] И далее можно прочитать: «Биология является наукой об организмах, о естественных условиях живого».[8] Одновременно Берталанфи подчеркивал, что биология должна содержать не только эмпирический базис, но включать также задачи теоретического его осмысливания и установления законов. Вместе с тем, самое истолкование природы законов он полностью заимствовал из позитивистской философской концепции. Например, он писал: «Строгая закономерность означает логическую связь мыслимых конструкций».[9] Здесь же указывалось, что становление законов совпадает с объяснением и по существу представляет собой логическое подчинение особенного общему.[10]
Такого рода непоследовательность снижала, конечно, ценность теоретических построений этого ученого. Однако ряд наблюдений и обобщений, сделанных им в рамках организмического подхода, представляют несомненный интерес.
Сильной стороной позиции Берталанфи является понимание методологической направленности теоретических разработок в области биологии. Так, рассматривая организмическую концепцию как метод мышления, он противопоставлял его, с одной стороны, витализму, с другой - механизму. При этом под витализмом он понимал объяснение процессов жизни путем обращения к принципам энтелехии (Дриш), диафизических сил (у Райнке) и др., используемым в качестве антипода классического причинного объяснения, если под последним понимать, например, объяснение целостных эффектов как следствий физико-химических взаимодействий частей. Под механизмом же Берталанфи имел в виду объяснение явлений жизни исходя из законов физики и химии. Последний рассматривался как пример аналитико-суммативного метода мышления.[11]
Собственной сферой приложения концепции механизма, по словам Берталанфи, оказываются физика и химия. Так, химия разлагает тела на простые составные части: молекулы, атомы, электроны. Физик, например, рассматривает теплоту тела как сумму кинетической энергии отдельных молекул. Согласно этому автору, граница химического способа рассмотрения может характеризоваться как граница «организации». Например, железную машину уже химической формулой исчерпывающе не объяснить, так как она имеет «организацию» выше химического уровня.[12]
В противовес механизму Берталанфи выдвигал три главных постулата:
Зависимость процессов в организме от целостной системы.
Динамическое понимание организации. Активность организма (против реактивности).[13] Отрицая наличие «живой субстанции», он ставил во главу биологического исследования живой организм.
«Живой организм является системой, организованной в иерархическом порядке, с большим числом различных частей, в которой большое число процессов так организовано, что благодаря устойчивым взаимным отношениям внутри некоторых границ при постоянном обмене составляющего систему материала и энергии, а также при внешних воздействиях, обусловливающих нарушения системы, внутреннее состояние в ней остается без изменений или восстанавливается, либо эти процессы ведут к производству аналогичных систем».[14]
По мнению Берталанфи, в этом определении схватывается различие живого и машины. Б машине также налицо порядок, организация процессов, и таковой может быть саморегулируемым благодаря внутреннему приспособлению; но машина является «гетерономной» вещью - процессы в ней организуются для исполнения определенного действия или получения определенного продукта, не для сохранения системы даже при непрестанном обмене ее частей.[15]
Справедливо отмечалось в литературе, что понятие организма, на которое опирался Берталанфи, упускает из виду исторический момент, присущий всему живому и выступающий решающим критерием для отделения живого от всех других форм неживой материи.[16]
Данное выше определение имплицитно включало две важнейшие характеристики живого, которые Берталанфи называл «динамическим равновесием» и «иерархической организованностью». По существу здесь уже заложено представление об «открытой системе», послужившее затем основой для выработки понятия «general system». И в самом деле, организм трактовался Берталанфи как ступень организации открытой системы.[17]
В переходе к этому понятию он усматривал попытку конкретизировать организмическую программу. Смысл понятия «открытая система» выявлялся в его противопоставлении понятию «закрытая система». Последняя не обнаруживает, прежде всего, обмена веществом, однако осуществляет обмен энергией.[18] Открытая система обнаруживает как обмен веществом, так и энергией.
Распространение понятия система на живые организмы привело Берталанфи к необходимости обобщения физических представлений о системах, прежде всего, понятия термодинамической системы и кинетических принципов. Такое обобщение велось по линии введения идеи «динамического равновесия».
Обычно под равновесием понимается независимое во времени состояние закрытой системы, при котором отсутствуют макропроцессы и макровеличины остаются постоянными, но в которых могут продолжаться микропроцессы, причем скорость всех прямых процессов равна скорости всех обратных. Для этих состояний реализуется второй закон классической термодинамики. Согласно данному закону конечное наступающее состояние равновесия характеризуется минимумом свободной энергии и максимумом энтропии. Здесь в состоянии равновесия доступны лишь процессы, не ведущие к изменению энтропии.
Подвижное или динамическое равновесие является независимым во времени состоянием открытой системы, которое характеризуется протеканием макропроцессов, однако макровеличины системы остаются постоянными. Такое равновесие оказывается, по Берталанфи, квазистационарным.[19] Здесь решающую роль имеют представления о потоках величин. Последние получают в рамках термодинамики необходимых процессов свое математическое выражение (поток энергии, энтропии, заряда и т.д.). Основное содержание этого раздела науки составляет установление связей между потоками различных величин и между коэффициентами, фигурирующими в этих соотношениях. [20]
Берталанфи установил, что открытая система, находящаяся в состоянии подвижного равновесия, обладает следующей особенностью: соотношение реагирующих компонентов зависит лишь от констант реагирования внутри системы, а не от величины внешнего воздействия. Аргументы, подтверждающие данный тезис, довольно подробно разбирал в своей статье А.Рапопорт на примере системы химических реакций.[21] В известной степени этот факт соответствует, как справедливо подчеркивал А.Бендман (Bendmann), регуляционной способности системы (Regulationfahigkeit).[22] Последняя означает поддержание постоянства состава системы при меняющихся условиях. Этим оправдывается приложимость к открытым системам понятия приспособления (Anpassung). Соответственно, авторегуляция вещественного обмена становится объяснимой из физических принципов.Живые организмы обнаруживают такое свойство вследствие того, что они фактически являются открытыми системами.
В качестве фундаментального свойства, выступающего основой авторегуляции в открытых системах, Берталанфи выделял эквифинальность и давал последней точное определение. «Система элементов Q(x, у, z, t) является эквифинальной в каждой подгруппе элементов Q, если мы можем изменить начальные условия Qj(x,y,z) без изменения значения Qj(x,y,z,∞)».[23] К примеру, в системе химических реакций данное свойство обнаруживается в том, что конечные концентрации будут независимы от начальных. Как замечал А.Рапопорт, вмешательство в систему, выражающееся в добавлении или изъятии произвольных количеств разных веществ, не нарушает «конечного» состояния системы. Система будет как бы «стремиться» к конечному состоянию, детерминированному ее собственной структурой, как если бы она была живым организмом, стремящимся к «цели».[24]
Вместе с тем, оказалось, что свойство живых систем, характеризуемое как «эквифинальность», может быть выведено в качестве следствия обобщенных законов термодинамики в применении к сложным структурам.[25] Берталанфи показал, что для открытых систем, стремящихся к подвижному равновесию, второй закон термодинамики принимает модифицированный вид: скорость возрастания энтропии внутри системы стремится в этом случае к минимальному значению, соответствующему динамическому равновесию. В такой форме данный закон относится к системам более общего типа, нежели те, к которым относится второй закон термодинамики в его обычной формулировке. [26]