Литмир - Электронная Библиотека

Классические принципы и модели механического исследования были построены на основе трудов Галилея и Ньютона. В них использовалось представление об относительно полном круге обусловленности механических явлений. Эта совокупная обусловленность выражается посредством вычленения тела движения и тела отсчета, с последним связывается трёхмерная сеть ортогональных координат. Наличие механического движения устанавливается относительно координатной сети, которая не может привносить возмущения в механическое движение, поэтому она рассматривается как инерционная.

Тело, в отношении которого изучается механическое движение, может либо перемещаться относительно координат, либо покоиться. Само оно рассматривается как система точек, обладающих механическими свойствами. Описание таких свойств даётся с помощью понятий масса, расстояние, время, сила, энергия, импульс и др. В соотношениях указанных свойств установлены определенные инварианты, которое фиксируются как законы механики.

Методология классической механики неразрывно связана с понятием изолированной системы частиц и применительно к этой системе формулирует три основных закона механики. Одновременно механика предполагает, что в рамках такой системы частицы взаимодействуют друг с другом и это взаимодействие проявляется с некоторой силой, получающей количественное выражение. Для механики характерно рассмотрение силы в качестве причины изменения движения по прямой (например, в качестве причины ускоренного механического движения). Вместе с тем, совокупное действие многих сил, как утверждается в механике, способно породить сложное движение (возвратно-поступательное, винтовое, круговое и т.д.). Причём, подобное совокупное действие не обязательно описывается моделью арифметического или алгебраического сложения сил. Нередко здесь используется модель векторного соединения, выражающая не что иное, как композицию системы действующих сил.

Показательно и другое. В механике система частиц рассматривается в качестве целостности, выделенной из среды. Целостная точка зрения ведёт в данном случае к пониманию системы как образования, на которое не действуют моменты внешних сил. Напротив, механический подход предполагает, что состояние системы полностью определяется законом сохранения внутренних моментов сил и законом сохранения момента импульса. В дополнение к этим законам вводится также положение, согласно которому целостное описание системы связано с учётом её полной энергии. Данное положение обобщается до принципа, утверждающего, что энергию изолированной системы можно преобразовать из одной формы в другую, однако полная энергия в её различных формах не исчезает и не рождается из ничего.

Нетрудно установить, что классический образ предмета механического исследования строится на представлении о сохраняемости системы и устойчивости её фундаментальных параметров и законов. Механика покоится на принципе, что природа одинакова, а механическая материя сохраняет своё бытие во все моменты движения. Утверждается, например, сохраняемость массы, ритма времени, полной энергии.

Ситуация меняется, однако, в релятивистской механике. Здесь принимается во внимание равномерное поступательное движение систем друг относительно друга и устанавливается его соответствие со скоростью движения света в вакууме. Релятивистская механика учитывает, что ряд существенных параметров системы претерпевают изменения в условиях движения, близкого (соизмеримого) со скоростью света. В подобных условиях выявляется зависимость базовых параметров механических систем от пространственно-временной неоднородности материи. Здесь возникают различия между свойствами систем, фиксируемыми в покоящемся и движущемся состояниях. Тем не менее, полное описание системы строится с учетом ряда универсальных законов сохранения (сохранения импульсов, сохранения энергии и др.).

Из постулатов теории относительности зависимость длительности интервалов времени и длин отрезков от выбора инерциальной системы отсчёта. Здесь релятивистский закон сложения скоростей существенно отличается от классического закона сложения скоростей. В классической физике при переходе от одной инерциальной системы (№ 1) к другой (№ 2) время остается тем же: , а пространственная координата изменяется по уравнению В теории относительности применяются так называемые преобразования Лоренца:

В итоге модели описания механических систем существенно модернизируются [2].

Ряд особенностей в моделирование механических систем внесла квантовая механика. Она имеет отношение к описанию поведения микрочастиц или их совокупностей. В этом описании учитывается волновая (колебательная) природа микрообъектов. Вместе с тем, учитываются квантование их свойств и квантовые переходы от одного состояния частиц к другому. Характеристика волновых эффектов в динамике частиц даётся с помощью волнового уравнения Шрёдингера. В состав этого уравнения включается пси-функция, квадрат модуля которой представляет собой плотность вероятности обнаружения частицы в заданной точке. Достоверность обнаружения частицы где-нибудь в пространстве выражается с помощью условия нормирования и записывается формулой, представленной в источнике [3]. Результат определяется интегрированием знаменитой в физике особой пси-функции.

По значениям указанной функции можно вычислить спектр квантовых энергетических состояний, допустимых для частицы. Исходя из волновых представлений, частица рассматривается в квантовой механике как «локализованная» в области суперпозиции бесконечного числа волн, как волновой пакет. Частота и длина волны в центре пакета вычисляются по формулам, в составе которых задействована так называемая постоянная Планка.

Замечательным результатом квантовой механики является возможность двойственного описания её объектов: либо как волны (со своей амплитудой, частотой и длиной волны), либо как частицы (со своей массой, энергией и импульсом). Выбор описания зависит от условий наблюдения и от постановки задач в эксперименте. Существенным для квантово-механического описания системы является вывод о неустранимой неопределённости такого описания. Этот вывод тесно связан со знаменитым принципом неопределённости Гейзенберга, с помощью которого фиксируется невозможность сужения области фиксации микрочастицы точнее некоторого предела. Величина предела устанавливается из соотношения, в котором устанавливается связь энергии импульса, времени и постоянной Планка.

Далее. Квантово-механические системы изменяют свои состояния, и это показано в теории и эксперименте. Изменения в квантовом мире происходят как при внешних воздействиях (бомбардировка атомов, приложение внешнего магнитного поля и т.д.), так и самопроизвольно. Например, потеря атомом энергии и излучение кванта энергии может происходить спонтанно и беспорядочно во времени. Предсказать точно момент энергетического перехода невозможно. Однако можно вычислить вероятность перехода в единицу времени. При этом действуют определённые правила отбора (ограничения на квантовые числа), при наличии которых вероятность перехода стремится к максимуму и даже приближается к единице. Существуют также запрещённые переходы, вероятность которых низкая. Самопроизвольный и случайный характер изменения энергетических состояний квантовых систем требует, таким образом, выработки специфических средств их описания, в состав которых входит понятие вероятности. Это обстоятельство давно подмечено методологами науки. Однако мало внимания обращается на то, что в квантовой механике используется более абстрактное, нежели в классической механике, определение состояния, связанное с вероятностью обнаружения электрона, например, в пространстве допустимых для него состояний.

В общем случае для этого требуется знать значения измеримых параметров Р и q , проецированных на ортогональные оси координат. Но соотношение указанных параметров здесь иное, нежели в классической механике, поскольку есть запрет на их совместное точное измерение - согласно принципу неопределённостей Гейзенберга. Тем не менее, в квантовой теории существуют специфические средства для получения замкнутого в информационном отношении описания поведения квантовых систем. Так, широко используется описание, основанное на понятии «комплексная волновая функция», которое выработано в рамках концепции волновой природы материи и с помощью которого даётся полное описание системы.

32
{"b":"711464","o":1}