Литмир - Электронная Библиотека
A
A

Но Кеплер был прав. Планеты действительно движутся вокруг Солнца по эллипсам.

После того как объективные данные вынудили его отказаться от безупречных многогранников, Кеплер, в более позднем возрасте, пришел к убеждению, что планеты при движении рождают музыку. В своем трактате «Гармония мира», изданном в 1619 году, он вывел, как звучит каждая из планет, и заключил, что «Земля поет ми-фа-ми». Это была не лучшая его работа. Однако кеплеровский анализ планетных орбит заложил основы для последующих исследований Исаака Ньютона (1643–1727), первого ученого, который строго использовал математику.

Ньютон верил в существование Бога, чье влияние видел в законах, которым подчиняется природа. В 1726 году он написал: «Такое изящнейшее соединение Солнца, планет и комет не могло произойти иначе, как по намерению и по власти могущественного и премудрого существа»12[10]. С момента их открытия ньютоновские законы движения и тяготения были радикально пересмотрены, но в качестве приближений остаются действующими и сегодня.

Ньютон и его современники без раздумий совмещали религию и науку – тогда это было общепринятой практикой. Вероятно, особенно к тому был склонен Готфрид Вильгельм Лейбниц (1646–1716), разработавший дифференциальное и интегральное исчисление примерно в то же время, что и Ньютон, но независимо от него. Лейбниц верил, что мир, который мы населяем, «наилучший из всех возможных миров», а все существующее зло необходимо. «Каждая вновь обретенная истина, каждый опыт или теорема – это новое зеркало, в котором отражается красота Бога»13. Лейбниц считал, что несовершенство мира «основывается только на том, что мы слишком мало знаем всеобщую гармонию Вселенной и скрытые основания деятельности Бога»14[11]. Иными словами, согласно Лейбницу, ужасное ужасно, поскольку мы не понимаем, что есть красота.

Аргумент Лейбница, как любят рассуждать философы и теологи, бесполезен без определения, что вообще означает «наилучший». Но сама идея, что наша Вселенная оптимальна в некотором смысле, закрепилась в науке и пробилась сквозь века. Как только она была выражена математически[12], она выросла в гиганта, на чьих плечах стоят все сегодняшние физические теории. Современные теории отличаются лишь тем, как они требуют от системы «наилучшего» поведения. Общая теория относительности Эйнштейна, например, может быть выведена из требования, чтобы искривление пространства-времени было как можно меньшим. Подобные методы существуют и для других взаимодействий. И до сих пор физики стараются найти всеобъемлющий принцип, в соответствии с которым наша Вселенная «наилучшая», – к этой проблеме мы вернемся позже.

Как мы сюда попали

По мере того как проходили столетия и математика становилась все эффективнее, отсылки к Богу в физике потихоньку сходили на нет или вплетались в сами законы природы. В конце XIX века Макс Планк (1858–1947) верил, что «святость непостижимого Божества как бы придает святость постижимым символам»[13]. Затем, когда XIX век перетек в XX, красота постепенно трансформировалась в руководящий принцип физиков-теоретиков, закристаллизовавшийся с развитием Стандартной модели.

Герман Вейль (1885–1955), математик, сделавший важный вклад в физику, даже и не думал оправдываться за свои не очень-то научные методы: «В своей работе я всегда пытаюсь объединить истину с красотой, но, когда мне приходилось выбирать одно или другое, я обычно выбирал красоту»15. Астрофизик Эдвард Артур Милн (1896–1950), авторитетный ученый в период разработки общей теории относительности, считал красоту «дорогой к знанию, а точнее единственным знанием, которым стоит обладать». В своем выступлении 1922 года в Клубе естественных наук Кембриджского университета он выражал недовольство изобилием неприглядных исследований:

Достаточно просмотреть подшивки старых номеров научных журналов, скажем, за последние пятьдесят лет, чтобы наткнуться на десятки статей, которые никак не обогатили научное знание, да никогда и не могли, являясь лишь грибком на стволе древа науки и, как грибок, постоянно возникая вновь при попытке уничтожения. <…> [Но если статья] возбуждает в нас эмоции, которые ассоциируются с красотой, никакие дальнейшие подтверждения не требуются; это не грибок, а цветок; это назначение науки, окончание работы, в которой наука достигла своей высшей цели. Неприглядные статьи – вот они-то требуют подтверждения 16.

Поль Дирак (1902–1984), нобелевский лауреат, в чью честь названо уравнение, пошел еще на шаг дальше и выдал инструкции: «Исследователь в своих усилиях выразить фундаментальные законы природы в математическом виде должен главным образом стремиться к математической красоте»17[14]. В другой раз, когда Дирака попросили кратко сформулировать свою философию физики, он подошел к доске и написал: «ФИЗИЧЕСКИЕ ЗАКОНЫ ДОЛЖНЫ ОБЛАДАТЬ МАТЕМАТИЧЕСКОЙ КРАСОТОЙ»18. Историк Хельге Крах завершил биографию Дирака следующим наблюдением: «…После 1935 года [ему], как правило, не удавалось достигать физических результатов непреходящей ценности. Не будет неуместным заметить, что принцип математической красоты направлял его мышление только в течение более позднего периода»19.

Альберт Эйнштейн (1879–1955), вообще не нуждающийся в представлении, довел себя до состояния, в котором верил, будто мышление само по себе способно раскрывать законы природы: «Я убежден, что посредством чисто математических конструкций мы можем найти те понятия и закономерные связи между ними, которые дадут нам ключ к пониманию явлений природы. <…> Поэтому я считаю в известном смысле оправданной веру древних в то, что чистое мышление в состоянии постигнуть реальность»20[15]. Справедливости ради отметим, что ученый в иных случаях все же подчеркивал необходимость наблюдений.

Жюль Анри Пуанкаре (1854–1912), внесший большой вклад как в математику, так и в физику, но наиболее известный, пожалуй, благодаря своему открытию детерминированного хаоса, восхвалял практическое применение красоты: «Мы видим, таким образом, что поиски прекрасного приводят нас к тому же выбору, что и поиски полезного…»21[16] Пуанкаре считал «экономию мышления» (Denkökonomie – термин, введенный Эрнстом Махом) «источником как красоты, так и практической пользы». Человеческое чувство прекрасного, утверждал он, «играет роль… тонкого критерия», помогающего исследователю разработать хорошую теорию, и «эта гармония одновременно удовлетворяет нашим эстетическим потребностям и служит подспорьем для ума, который она поддерживает и которым руководит»22[17].

Да и Вернер Гейзенберг (1901–1976), один из основателей квантовой механики, смело верил, что красота владеет истиной: «Когда сама природа подсказывает математические формы большой красоты и простоты… то поневоле начинаешь верить, что они “истинны”, то есть что они выражают реальные черты природы»23[18]. Как вспоминает его жена:

Однажды лунной ночью мы шли по горе Хайнберг, и он был совершенно зачарован своими мысленными образами, пытаясь растолковать мне свое новое открытие. Он говорил о чуде симметрии как прообраза творения, о гармонии, о красоте простоты и о ее скрытой сути 24.

Опасайтесь прогулок под луной с физиками-теоретиками – иногда восторженность берет над нами верх.

вернуться

10

Ньютон И. Математические начала натуральной философии. М.: Наука, 1989. – Прим. перев.

вернуться

11

Лейбниц Г. В. Рассуждение о метафизике // Сочинения в четырех томах. Т. 1. М.: Мысль, 1982. – Прим. перев.

вернуться

12

Это называется принципом наименьшего действия.

вернуться

13

Из его доклада 1937 года «Религия и естествознание»: http://vivovoco.astronet.ru/VV/PAPERS/ECCE/PHIL2.HTM. – Прим. перев.

вернуться

14

Цитируется по: Стюарт И. Истина и красота: всемирная история симметрии. М.: Corpus, 2010. – Прим. перев.

вернуться

15

Эйнштейн А. О методе теоретической физики // Собрание научных трудов. Т. 4. М.: Наука, 1967. – Прим. перев.

вернуться

16

Пуанкаре А. Ценность науки // О науке. М.: Наука, 1990. – Прим. перев.

вернуться

17

Там же. – Прим. перев.

вернуться

18

Гейзенберг В. Физика и философия. Часть и целое. М.: Наука, 1989. – Прим. перев.

6
{"b":"704909","o":1}