«А еще я люблю симметрии, что и сделало для меня SUSY заманчивой».
* * *
Как я уже упоминала, в своем стремлении понять, из чего сделан мир, мы обнаружили двадцать пять разных элементарных частиц. Суперсимметрия дополняет эту коллекцию набором пока не открытых частиц-партнеров, по одной на каждую из известных, и несколькими еще. Такое суперсимметричное довершение привлекательно, поскольку известные частицы делятся на два типа – фермионы и бозоны (названные так в честь Энрико Ферми и Сатиендры Бозе соответственно), – а суперсимметрия объясняет, как эти два типа частиц составляют одно целое.
Фермионы – страшные индивидуалисты. Как бы вы ни старались, вам не удастся добиться того, чтобы два фермиона делали одно и то же в одном и том же месте, – между ними всегда должно быть различие. Бозоны же не стеснены подобным ограничением и охотно присоединяются друг к другу в общем танце. Вот почему электроны, будучи фермионами, сидят на разных оболочках вокруг атомного ядра. Будь они бозонами, они бы вместо этого уселись рядышком на одной оболочке, лишив Вселенную химии – и химиков, ведь наше собственное существование зиждется на отказе маленьких фермионов жить под одной крышей.
Теория суперсимметрии постулирует, что законы природы не меняются при замене бозонов на фермионы и наоборот. Это означает, что каждый бозон должен иметь фермионного партнера, а всякий фермион – бозонного. Но, не считая различий в своей принадлежности к бозонам или фермионам, частицы-партнеры должны быть идентичными.
Поскольку никакие из уже известных частиц не подходят друг к другу таким образом, мы заключили, что среди них нет суперсимметричных пар, зато нужно ждать открытия новых частиц. Словно у нас есть гора кастрюль и крышек и мы убеждены, что недостающие предметы определенно должны быть где-то рядом.
К сожалению, суперсимметричные уравнения не говорят нам, какие у этих частиц-партнеров массы. Так как на получение более тяжелых частиц требуется больше энергии, частицу труднее обнаружить, когда ее масса большая. Пока мы поняли одно: суперпартнеры, если они существуют, настолько тяжелы, что энергия в наших экспериментах до сих пор недостаточно высока, чтобы их породить.
* * *
Суперсимметрия дерзает на многое. Помимо изобличения бозонов и фермионов как двух частей одного целого, SUSY еще помогает объединить фундаментальные взаимодействия, а также у нее есть потенциал объяснить некоторые численные случайности. Более того, некоторые из суперсимметричных частиц имеют нужные свойства, чтобы образовывать темную материю. Я расскажу об этом подробнее в следующих главах.
Суперсимметрия так тесно стыкуется с действующими теориями, что многие физики убеждены: она должна быть верна. «Несмотря на усилия многих сотен физиков, проводящих эксперименты в поисках этих частиц, никакие суперпартнеры никогда не наблюдались и не детектировались»2, – пишет физик Дэн Хупер из Фермилаб[3]. И все же «это почти не обескуражило физиков-теоретиков, которые страстно ждут, что природа будет выражена таким образом – окажется суперсимметричной. Для многих из этих ученых идеи, стоящие за суперсимметрией, попросту слишком красивы и слишком элегантны, чтобы не быть частью нашей Вселенной. Они разрешают слишком много проблем и вписываются в наш мир слишком естественно. По мнению этих искренне верующих, частицы-суперпартнеры просто обязаны существовать».
Хупер не единственный, кто подчеркивает силу этой убежденности. «Многим физикам-теоретикам трудно поверить, что суперсимметрия не играет никакой роли где-нибудь в природе»3, – замечает физик Джефф Форшоу. А в статье 2014 года, опубликованной в журнале Scientific American под заголовком «Суперсимметрия и кризис в физике», специалисты по физике элементарных частиц Мария Спиропулу и Джозеф Ликкен разделяют надежду на то, что доказательства в конце концов появятся, – с формулировкой «без преувеличения можно сказать: большинство специалистов по физике элементарных частиц во всем мире верят, что суперсимметрия должна быть верной»4 (выделение авторов статьи).
Привлекательности SUSY добавляет то, что симметрия, касающаяся бозонов и фермионов, долго считалась невозможной из-за математического доказательства, которое ее вроде бы запрещало 5[4]. Но ни одно доказательство не лучше, чем его допущения. Оказалось, что если ослабить допущения того доказательства, суперсимметрия, напротив, становится максимально возможной симметрией, способной согласовываться с действующими теориями 6[5]. И как же природа могла не воспользоваться настолько красивой идеей?
* * *
«Для меня самой красивой особенностью SUSY всегда было то, что это максимально возможная симметрия, – вспоминает Михаэль. – Мне это очень импонирует. Когда я узнал об этой исключительности, то подумал: “О, интересно!” – поскольку мне казалось, что такая идея – вы налагаете симметрии и находите правильные законы природы, даже если не понимаете точно, почему это работает, – выглядит сильным принципом. Так что заниматься SUSY мне казалось делом стоящим».
Когда я была студенткой, в конце 1990-х годов, простейшие SUSY-модели уже вступили в противоречие с данными и начался процесс разработки более сложных, но все еще жизнеспособных моделей[6]. Мне эта область виделась такой, где нельзя сказать ничего нового, пока не обнаружат предсказанные частицы. Я решила держаться от SUSY подальше до тех пор, пока это не произойдет.
Этого не произошло. Никаких доказательств SUSY не обнаружилось на Большом электрон-позитронном коллайдере, функционировавшем до 2000 года. Ничего не нашли и на Тэватроне, коллайдере, в котором достигались более высокие энергии, чем на Большом электрон-позитронном, и который работал до 2011 года. Еще более мощный Большой адронный коллайдер, использующий туннель Большого электрон-позитронного, запущен в 2008 году, но SUSY так и не проявилась.
И я до сих пор переживаю, что совершила большую ошибку, не выбрав направление исследований, которое столь многие мои коллеги расценивали – и продолжают расценивать – как очень перспективное.
Долгие годы легенда гласила, что нечто новое должно проявиться в Большом адронном коллайдере, потому что иначе лучшее из существующих описаний физики элементарных частиц – Стандартная модель – не будет естественным, согласно тем критериям, которые были введены, среди прочих, Джаном Франческо Джудиче. Те математические формулы, позволяющие измерить естественность, основываются на убеждении, что теория с очень большими или очень маленькими числами не симпатична.
В последующих главах этой книги мы выясним, обоснованно ли подобное убеждение. Пока достаточно сказать, что оно широко распространено. В статье 2008 года Джудиче объяснил: «Понятие естественности… развилось в результате “коллективного движения” сообщества, которое все больше подчеркивало… важность [этого понятия] для существования физики за пределами Стандартной модели»7. И чем больше физики изучали естественность, тем тверже убеждались: скоро должны воспоследовать новые открытия, иначе не избежать ужасных численных случайностей.
«По прошествии времени кажется удивительным, сколько значения придавалось этому аргументу о естественности, – говорит Михаэль. – Если вспомнить, люди повторяли один и тот же аргумент, снова и снова, не очень-то раздумывая над ним. Они говорили одно и то же, одно и то же десять лет. Правда удивительно, что это служило основной движущей силой для такой большой доли работ по построению моделей. Оглядываясь назад, я нахожу это странным. Я все еще думаю, что естественность привлекательна, но больше не убежден, что это обещает нам новую физику в Большом адронном коллайдере».