Breiter H.C. Functional imaging of neural responses to expectancy and experience of monetary gains and loses /Breiter H.C., Aharon I., Kahneman D., Dale A., Shizgal P.// Neuron. 2001. V.30. P.619–639.
Breiter H.C. Functional magnetic resonance imaging of brain reward circuitry in the human /Breiter H.C., Rosen B.R. // Ann. N.Y., Acad. Sci. 1999. V.877. P.523–547.
Broberger, C. Hypocretin/orexin – and melanin-concentrating hormone-expressing cells from distinct populations in the rodent lateral hypothalamus: relationship to the neuropeptide Y and agouti gene-related protein systems. /C. Broberger, L. De Lecea, J. G. Sutcliffe et al. // J. Comp. Neurol. – 1998. – Vol.402. – P.460–474.
Bruijnzeel A.W. Stressinduced sensitization of CRH-ir but not P-CREB-ir responsivity in the rat central nervous system /Bruijnzeel A.W., Stam R., Compaan J.C., Wiegant V.M. // Brain Res. 2001. V. 908. P.187–196.
Bruijnzeel A.W. The role of corticotrophin-releasing factor-like peptide4s in cannabis, nicotine, and alcohol dependence /Bruijnzeel A.W., Gold M.S. // Brain Res. Rev. 2005. V.49. P.505–528.
Cabral A. /Ghrelin indirectly activates hypophysiotropic CRF Neurons in rodents /A. Cabral, O. Suescun, Jeffrey M. Zigman and M. Perello // PLoS One., 2012.
Cador M. Central administration of corticotropin releasing factor induces long-term sensitization to d-amphetamine /Cador M., Cole B.J., Koob G.F. et al. // Brain Res. 1993. V. 606. P.181–186.
Calissendorff, J. Alcohol ingestion does not affect serum levels of peptide YY but decreases both total and octanoylated ghrelin levels in healthy subjects. /Calissendorff, J., Danielsson, O., Brismar, K., Rojdmark, S.//Metabolism – Clinical and Experimental55 (12) – 2006 – P.1625–1629.
Calissendorff, J. Inhibitory effect of alcohol on ghrelin secretion in normal man. /Calissendorff, J., Danielsson, O., Brismar, K., Rojdmark, S. //European Journal of Endocrinology152 (5) – 2005 – P.743–747.
Carroll, M.E. Food-deprivation increases oral and intravenous drug intake in rats. /Carroll, M.E., France, C.P., Meisch, R.A. //Science 205 (4403) – 1979 – P.319–321.
Cason, A. M. Role of orexin (hypocretin) in reward-seeking and addiction: Implication for obesity. /T. C. Chou, R. J. Smith, P. Tashili-Fahadan et al. // Physiology and Behavior. – 2010. – Vol.100. – P.419–428.
Cassell M.D. The intrinsic organization of the central extended amygdale /Cassell M.D., Freedman L.J., Shi C. // Ann. N.Y. Acad. Sci. 1999. V.877. P.217–241.
Chalmers D.T. Corticotrophin-releasing factor receptors: from molecular biology to drug design /Chalmers D.T., Lovenberg T.W., Grigoriadis D.E. et al. // Trends Pharmacol. Sci. 1996. V. 17. P.166–172.
Chalmers D.T. Localization of novel corticotropin-releasing factor receptor (CRF2) mRNA expression to specific subcortical nuclei in rat brain: comparison with CRF1 receptor mRNA expression /Chalmers D.T., Lovenberg T.W., De Souza E.B. // J. Neurosci. 1995. V. 15. P.6340–6350.
Chen R. Expression cloning of a human corticotropin-releasing-factor receptor /Chen R., Lewis K.A., Perrin M.H., Vale W.W. // Proc. Natl. Acad. Sci. USA. 1993. V. 90. P.8967–8971.
Chevrette J. Both the shell of the nucleus accumbens and the central nucleus of the amygdala support amphetamine self-administration in rats /Chevrette J., Stellar J.R., Hesse G.W., Markou A. // Pharmacol. Biochem. Behav. 2002. V.71. P.501–507.
Chuang J.C. Ghrelin mediates stress-induced food-reward behavior in mice. / Chuang J.C., Perello M., Sakata I., Osborne-Lawrence S., Savitt J.M., et al. // J Clin Invest. 2011;121:2684–2692. [PMC free article] [PubMed]
Cole B.J. Central administration of a CRF antagonist blocks the development of stress-induced behavioral sensitization /Cole B.J., Cador M., Stinus L. et al. // Brain Res. 1990. V. 512. P.343–346.
Cole B.J. Propranolol antagonizes the enhanced conditioned fear produced by corticotropin releasing factor /Cole B.J., Koob G.F. // J. Pharmacol. Exp. Ther. 1988. V. 247. P.902–910.
Conover K. Competition and summation between rewarding effects of sucrose and lateral hypothalamic stimulation in the rat /Conover K., Shizgal P. // Behav. Neurosci. 1994. V.108. P.537–548.
Cook C.J. Stress induces CRF release in the paraventricular nucleus, and both CRF and GABA release in the amygdale /Cook C.J. // Physiol. Behav. 2004. V. 82. P.751–762.
Cryan J.F. Assessing antidepressant activity in rodents: recent developments and future needs /Cryan J.F., Markou A., Lucki I. // Trends Pharmacol. Sci. 2002. V. 23. P.238–245.
Cummings. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. /Cummings, D.E., Purnell, J.Q., Frayo, R.S., Schmidova, K., Wisse, B.E., Weigle, D.S. // Diabetes 50 (8) – 2001 – Р.1714–1719.
Cummings. Plasma ghrelin levels and hunger scores in humans initiating meals voluntarily without time- and food-related cues. /Cummings, D.E., Frayo, R.S., Marmonier, C., Aubert, R., Chapelot, D. //American Journal of Physiology – Endocrinologyand Metabolism 287 (2) – 2004 - Р.297–304.
Date, Y. Orexins, orexigenic hypothalamic peptides, interact with autonomic, neuroendocrine and neuroregulatory systems. /Y. Date, Y. Ueta, H. Yamashita et al. // Prog. Natl. Acad. Sci. – 1999. – Vol.96. – P.748–753.
De Lecea, L. Hypocretins and the neurobiology of sleep-wake mechanisms. /L. De Lecea // Prog. Brain Res. – 2012. – Vol.196. – P.234–248.
De Souza E.B. Corticotropin-releasing factor receptors are widely distributed within the rat central nervous system: an autoradiographic study /De Souza E.B., Insel T.R., Perrin M.H. et al. // J. Neurosci. 1985. V. 5. P.3189–3203.
De Souza E.B. Corticotropin-releasing factor receptors in rat pituitary gland: autoradiographic localization /De Souza E.B., Perrin M.H., Rivier J. et al. // Brain Res. 1984. V. 296. P.202–207.
Di Chiara G. Dopamine and drug addiction: the nucleus accumbens shell connection. /Di Chiara G, Bassareo V, Fenu S, De Luca MA, Spina L, Cadoni C, Acquas E, Carboni E, Valentini V, Lecca D. // Neuropharmacology 2004;47(suppl 1):227–241.
Di Sebastiano, A. R. Orexin mediates initiation of sexual behavior in sexually naïve male rats, but is not critical for sexual performance. /A. R. Di Sebastiano, S. Yong-Yow, L. Wagner // Hormones and Behavior. – 2010. – Vol.58. – P.397–404.
Dickson, S.L. Blockade of central nicotine acetylcholine receptor signaling attenuate ghrelin-induced food intake in rodents. /Dickson, S.L., Hrabovszky, E., Hansson, C., Jerlhag, E., Alvarez-Crespo, M., Skibicka, K.P., Molnar, C.S., Liposits, Z., Engel, J.A., Egecioglu, E. // Neuroscience 171 (4) – 2010 – Р.1180–1186.
Doyon W.M. Dopamine activity in the nucleus accumbens during consummatory phases of oral ethanol self-administration. /Doyon W.M, York JL, Diaz L.M, Samson H.H, Czachowski C.L, Gonzales R.A. // AlcoholClin Exp Res 2003; 27:1573–1582.
Dunn A.J. Physiological and behavioral responses to corticotropin-releasing factor administration: is CRF a mediator of anxiety or stress responses? /Dunn A.J., Berridge C.W. // Brain Res. Brain Res. Rev. 1990. V. 15. P.71–100.
Dunn A.J., File S.E. Corticotropin-releasing factor has an anxiogenic action in the social interaction test. /Dunn A.J., File S.E. // Horm. Behav. 1987. V. 21. P.193–202.
Dworkin S.I. Lack of an effect of 6-hydroxydopamine lesions of the nucleus accumbens on intravenous morphine self-administration. /Dworkin S.I, Guerin G.F, Co C, Goeders N.E, Smith J.E. // Pharmacol Biochem Behav 1988;30:1051–1057
Edwards, C. M. The effect of the orexins on food intake comparison with neuropeptide Y, melanin concentrating hormone and galanin. /C. M. Edwards, S. Abusnana, S. Sunter et al. // J. Endocrinol. – 1999. – Vol.160. – P.7–12
Egecioglu, E. Ghrelin increases intake of rewarding food in rodents. /Egecioglu, E., Jerlhag, E., Salome, N., Skibicka, K.P., Haage, D., Bohlooly, Y.M., Andersson, D., Bjursell, M., Perrissoud, D., Engel, J.A., Dickson, S.L. //Addiction Biology 15 (3) – 2010 – Р.304–311.