Литмир - Электронная Библиотека
A
A

Что, если вместо того, чтобы позволить машинам преследовать их цели, потребовать от них добиваться наших целей? Такая машина, если бы ее можно было построить, была бы не только интеллектуальной, но и полезной для людей. Попробуем следующую формулировку:

Машины полезны настолько, насколько можно ожидать, что их действия достигнут наших целей.

Пожалуй, именно к этому нам все время следовало стремиться.

Разумеется, тут есть трудность: наши цели заключены в нас (всех 8 млрд человек, во всем их великолепном разнообразии), а не в машинах. Тем не менее возможно построить машины, полезные именно в таком понимании. Эти машины неизбежно будут не уверены в наших целях – в конце концов, мы сами в них не уверены, – но, оказывается, это свойство, а не ошибка (то есть хорошо, а не плохо). Неуверенность относительно целей предполагает, что машины неизбежно будут полагаться на людей: спрашивать разрешения, принимать исправления и позволять себя выключить.

Исключение предпосылки, что машины должны иметь определенные цели, означает, что мы должны будем изъять и заменить часть предпосылок ИИ – базовые определения того, что мы пытаемся создать. Это также предполагает перестройку значительной части суперструктуры – совокупности идей и методов по разработке ИИ. В результате возникнут новые отношения людей и машин, которые, я надеюсь, позволят нам благополучно прожить следующие несколько десятилетий.

2. Разумность людей и машин

Если вы зашли в тупик, имеет смысл вернуться назад и выяснить, в какой момент вы свернули не в ту сторону. Я заявил, что стандартная модель ИИ, в которой машины оптимизируют фиксированную цель, поставленную людьми, – это тупик. Проблема не в том, что у нас может не получиться хорошо выполнить работу по созданию ИИ, а в том, что мы может добиться слишком большого успеха. Само определение успеха применительно к ИИ ошибочно.

Итак, пройдем по собственным следам в обратном направлении вплоть до самого начала. Попытаемся понять, как сложилась наша концепция разумности и как получилось, что она была применена к машинам. Тогда появится шанс предложить лучшее определение того, что следует считать хорошей системой ИИ.

Разумность

Как устроена Вселенная? Как возникла жизнь? Где ключи к пониманию этого? Эти фундаментальные вопросы заслуживают размышлений. Но кто их задает? Как я на них отвечаю? Как может горстка материи – несколько килограммов розовато-серого бланманже, которое мы называем мозгом, – воспринимать, понимать, прогнозировать и управлять невообразимо огромным миром? Очень скоро мозг начинает исследовать сам себя.

Тысячелетиями мы пытаемся понять, как работает наш ум. Первоначально это делалось из любопытства, ради самоконтроля и вполне прагматичной задачи решения математических задач. Тем не менее каждый шаг к объяснению того, как работает ум, является и шагом к воссозданию возможностей ума в искусственном объекте – то есть к созданию ИИ.

Чтобы разобраться в том, как создать разумность, полезно понять, что это такое. Ответ заключается не в тестах на IQ и даже не в тесте Тьюринга, а попросту во взаимосвязи того, что мы воспринимаем, чего хотим и что делаем. Грубо говоря, сущность разумна настолько, насколько ее действия могут привести к получению желаемого при условии, что желание было воспринято.

Эволюционные корни

Возьмем самую обыкновенную бактерию, например E. coli. У нее имеется полдесятка жгутиков – длинных тонких, как волоски, усиков, вращающихся у основания по часовой или против часовой стрелки. (Этот двигатель сам по себе потрясающая штука, но сейчас речь не о нем.) Плавая в жидкости у себя дома – в нижнем отделе вашего кишечника, – E. coli вращает жгутики то по часовой стрелке и «пританцовывает» на месте, то против, отчего они сплетаются в своего рода пропеллер, и бактерия плывет по прямой. Таким образом, E. coli может перемещаться произвольным образом – то плыть, то останавливаться, – что позволяет ей находить и потреблять глюкозу, вместо того чтобы оставаться неподвижной и погибнуть от голода.

Если бы на этом все заканчивалось, мы не назвали бы E. coli сколько-нибудь разумной, потому что ее действия совершенно не зависели бы от среды. Она не принимала бы никаких решений, только выполняла определенные действия, встроенные эволюцией в ее гены. Но это не все. Если E. coli ощущает увеличение концентрации глюкозы, то дольше плывет и меньше задерживается на месте, а чувствуя меньшую концентрацию глюкозы – наоборот. Таким образом, то, что она делает (плывет к глюкозе), повышает ее шансы достичь желаемого (по всей видимости, больше глюкозы), причем она действует с опорой на воспринимаемое (увеличение концентрации глюкозы).

Возможно, вы думаете: «Но ведь и такое поведение встроила в ее гены эволюция! Как это делает ее разумной?» Такое направление мысли опасно, поскольку и в ваши гены эволюция встроила базовую конструкцию мозга, но вы едва ли станете отрицать собственную разумность на этом основании. Дело в том, что нечто заложенное эволюцией в гены E. coli, как и в ваши, представляет собой механизм изменения поведения бактерии под влиянием внешней среды. Эволюция не знает заранее, где будет глюкоза или ваши ключи, поэтому организм, наделенный способностью найти их, получает еще одно преимущество.

Разумеется, E. coli не гигант мысли. Насколько мы знаем, она не помнит, где была, и если переместится из точки А в точку Б и не найдет глюкозы, то, скорее всего, просто вернется в А. Если мы создадим среду, где привлекательное увеличение концентрации глюкозы ведет к месту содержания фенола (яда для E. coli), бактерия так и будет следовать вслед за ростом концентрации. Она совершенно не учится. У нее нет мозга, за все отвечает лишь несколько простых химических реакций.

Огромным шагом вперед стало появление потенциала действия – разновидности электрической сигнализации, возникшей у одноклеточных организмов около 1 млрд лет назад. Впоследствии многоклеточные организмы выработали специализированные клетки, нейроны, которые с помощью электрических потенциалов быстро – со скоростью до 120 м/с, или 430 км/ч – передают сигналы в организме. Связи между нейронами называются синапсами. Сила синаптической связи определяет меру электрического возбуждения, проходящего от одного нейрона к другому. Изменяя силу синаптических связей, животные учатся[11]. Обучаемость дает громадное эволюционное преимущество, поскольку позволяет животному адаптироваться к широкому спектру условий. Кроме того, обучаемость ускоряет темп самой эволюции.

Первоначально нейроны были сгруппированы в нервные узлы, которые распределялись по всему организму и занимались координацией деятельности, скажем, питания и выделения, или согласованным сокращением мышечных клеток в определенной области тела. Изящные пульсации медузы – результат действия нервной сети. У медузы нет мозга.

Мозг возник позднее, вместе со сложными органами чувств, такими как глаза и уши. Через несколько сот миллионов лет после появления медузы с ее нервными узлами появились мы, люди, существа с большим головным мозгом – 100 млрд (1011) нейронов и квадриллион (1015) синапсов. Медленное в сравнении с электрическими цепями «время цикла» в несколько миллисекунд на каждое изменение состояния является быстрым по сравнению с большинством биологических процессов. Человеческий мозг часто описывается своими владельцами как «самый сложный объект во Вселенной», что, скорее всего, неверно, но хорошее оправдание тому факту, что мы до сих пор очень слабо представляем себе, как он работает. Мы очень много знаем о биохимии нейронов и синапсов в анатомических структурах мозга, но о нейронной реализации когнитивного уровня – обучении, познании, запоминании, мышлении, планировании, принятии решений и т. д. – остается по большей части гадать[12]. (Возможно, это изменится с углублением нашего понимания ИИ или создания все более точных инструментов измерения мозговой активности.) Итак, читая в СМИ, что такое-то средство реализации ИИ «работает точно так же, как человеческий мозг», можно подозревать, что это чье-то предположение или чистый вымысел.

вернуться

11

Сантьяго Рамон-и-Кахаль в 1894 г. предположил, что изменения синапсов являются признаком обучения, но эта гипотеза была экспериментально подтверждена только в конце 1960-х гг. См.: Timothy Bliss and Terje Lomo, “ Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path,” Journal of Physiology 232 (1973): 331–56.

вернуться

12

Краткое введение см. в статье: James Gorman, “Learning how little we know about the brain,” The New York Times, November 10, 2014. См. также: Tom Siegfried, “There’s a long way to go in understanding the brain,” ScienceNews, July 25, 2017. Специальный выпуск журнала Neuron в 2014 г. (vol. 94, pp. 933−1040) дает общее представление о множестве подходов к пониманию головного мозга.

4
{"b":"698018","o":1}