Исследования, проведенные в Казанском НПО "Компрессор", показали, что в области устойчивой работы ступени колеса компрессора наблюдаются низкоамплитудные пульсации давления, составляющие в основном менее 1%, в частотный диапазон пульсаций занимает практически всю область. В области вращающегося срыва амплитуда пульсаций перепада давления возрастает по отношению к первоначальной примерно на 6%. Частота пульсаций здесь не превышает 2,5 Гц. На участках помпажа частота пульсаций снижается до 1 Гц, а амплитуда возрастает до 38% по перепаду давления и 5% по давлению в диффузоре.
Помпаж может возникнуть при следующих ситуациях:
– Пуск компрессора и останов компрессора
– Работа на низких нагрузках или резкие изменения нагрузки
– Нестандартные режимы и ситуации, в частности, это "горячий пуск", изменение режима работы нагнетателя до значительного уменьшения расхода газа (приблизительно до 60% расчетного значения), -снижение частоты вращения нагнетателя ниже допустимой;
– Ложные срабатывания автоматики и электронных сигнализаторов помпажа (Так, анализ сигналов в предпомпажной зоне показывает, что спектральные составляющие, характеризующие собственно помпажные колебания, лежат в диапазоне 0,5-6 Гц. Спектральные составляющие сигнала датчика, лежащие выше 5-7 Гц, являются помехами).
– Колебаний давления газа в газопроводе, например, при изменении характеристики сети (газопровода) вследствие влияния параллельно включенных, но более напорных нагнетателей; появление разрежения во всасе компрессора из-за снегопада, образования гидратов и пр.
–– Изменения состава газа
–– Резкие технологические возмущения
–– Засорение фильтров
–– Неисправность обратного клапана
–– Самопроизвольное закрытие клапанов в нагнетании
или всасывании или закрытие этих клапанов из-за ошибки оператора, например, неправильное или несвоевременная перестановка кранов в трубной обвязке
–– Неисправность холодильника
–– Неисправность привода
––Попадание посторонних предметов на защитную решетку нагнетателя и ее обледенение и др.
Внешне помпаж проявляется в виде хлопков, сильной вибрации нагнетателя, отдельных периодических толчков, в результате чего возможны разрушение рабочего колеса нагнетателя, повреждение упорного подшипника, разрушение лабиринтных уплотнений и т.д.
Возникновение помпажа в нагнетателе вызывает колебания частоты вращения и температуры газа, и, как следствие, к возникновению неустойчивой работы осевого компрессора, что, в свою очередь, приводит к аварийной остановке ГПА.
Помпажные явления в осевом компрессоре могут охватить компрессор в целом и проявляться в виде периодического изменения давления воздуха на линии нагнетания, температуры воздуха, частоты вращения, а также повышенной вибрации агрегата и шума.
В каждом конкретном случае помпаж может вызываться различными причинами. Например, в условиях работы ГТУ на компрессорных станциях наблюдаются случаи появления помпажа при обмерзании входной части осевого компрессора при повышенной влажности наружного воздуха в период сильных туманов, снегопадов и метелей.
Аварийные остановки агрегатов из-за обмерзания входной части компрессора приводят к нарушению работы станции, уменьшают подачу товарного газа и отрицательно сказываются на работоспособности отдельных узлов и деталей ГТУ.
Помпаж осевого компрессора при обледенении входной кромки осевого компрессора может сопровождаться мощным хлопком и выбросом воздуха во всасывающий тракт агрегата. Следует отметить, что помпаж здесь наступает прежде всего в результате внезапного возмущения потока воздуха в момент отрыва кусков льда или налипшего снега со стенок конфузора или направляющих лопаток компрессора. В момент отрыва кусков льда с направляющего аппарата компрессора, возросшая при обледенении в межлопаточных каналах осевая составляющая скорости резко падает, вследствие быстрого увеличения проходного сечения решетки и лопатки как бы не успевают «подхватить» поток воздуха, что вызывает нарушение целостности потока и увеличение местных сопротивлений и, как следствие этого, выброс остатков льда во всасывающий патрубок.
Частота пульсаций достаточно жестко связана с емкостью сети и длиной трубопроводов. Амплитуды колебаний также зависят от емкости сети, ее инерционных и демпфирующих свойств. Зависимость от сети настолько велика, что один и тот же компрессор при одинаковых режимах по расходу газа и частоте вращения может работать как в режиме помпажа, так и без его проявления. Изменение емкости по расходу рабочего тела вызывает отклонение момента начала помпажа. Этим, в частности, объясняется то, что линия совместной работы компрессора и газовой турбины в установках с регенерацией теплоты отходящих газов проходит ближе к линии помпажа, чем в установках без регенерации теплоты отходящих газов.
Пример реальной картины помпажа в реальных производственных условиях компрессора полипропиленового производства представлен ниже.
Рис. 1.8. Картина помпажа пропиленового компрессора
а) Перепад давления на диафрагме ΔPo во всасе 1-й ступени
б) Перепад давления на диафрагме ΔPo во всасе 2-й ступени
в) Перепад давления на диафрагме ΔPo в нагнетании
Результатом помпажа компрессора стали нестабильность расхода и давления, резкие колебания потребляемой мощности, приводящие к усталости металла, были обнаружены повреждения подшипников вала колеса, увеличение зазоров в уплотнениях. Это в свою очередь привело к снижению КПД и в дальнейшем к сокращению межремонтного срока работы.
Граница помпажа
Точка на характеристике компрессора, левее которой возможен помпаж, называется граничной точкой помпажа.
При малых расходах поток газа с определенной степенью повышения давления занимает не всю полость проточной части, что приводит к расширению газа в определенных местах, часть потока газа из отвода возвращается обратно в рабочее колесо, а затем снова выбрасывается в отвод. Возникает т.н. вращающийся срыв потока газа в рабочем колесе. В результате этого происходит колебание давления и производительности, компрессор начинает работать с периодическими ударами и вибрацией. При определенных условиях может произойти прекращение подачи газа или даже разрушение компрессора.
При уменьшении производительности давление нагнетания растет до определенного максимального значения рмакс. При дальнейшем уменьшении V начинается нестационарная работа компрессора с ударами и колебаниями параметров. Интенсивность и частота этих ударов зависят от величины рк, плотности перекачиваемого газа, емкости сети трубопроводов и других факторов.
Явление помпажа в компрессорах выражено более явно, чем насосах, т.к. перекачиваемый газ в компрессоре и трубопроводе является аккумулятором энергии, способным вызывать упругие колебания в системе.
Кроме того, неустойчивая зона напорной характеристики газовых машин значительно шире, чему у насосов, главным образом за счет применения больших углов наклона лопастей или лопаток. Так, например, зона помпажа у многоступенчатых компрессоров достигает 60%, у нагнетателей наддува транспортных двигателей (при угле изгиба лопатки 900, она распространяется почти до номинального режима, т.е. для таких машин допустимы лишь перегрузки по производительности.
Теоретическая граница помпажа должна совпадать с режимом максимального давления. В действительности помпаж начинается при несколько больших производительностях.
Простейшее объяснение механизма возникновения неустойчивой работы компрессора в зоне границы помпажа показано на рис. 1.9.