Образно говоря, восемнадцать резонаторов-усилителей, трактуемых как длинные деревянные трубы, сами являются “вторичным” оргâном, который в необходимой мере «продлевает» звучание существующего ныне в Капелле концертного органа и звучание хора.
Напомним о важнейшей роли исторической известково-гипсо-песчанной стяжки в обеспечении акустической роли замкнутых воздушных полостей – резонаторов.
По акустическим принципам конструкция резонатора-усилителя предполагает наличие в нём только достаточно жестких стенок, отражающих многократно звук в полость резонатора и во внешнюю среду. Все стенки резонатора-усилителя нельзя демпфировать, т.е. искусственно гасить их колебания.
Излучение любого резонатора всегда направлено в сторону наименьшего акустического сопротивления.
Как правило, «чистые» физические резонаторы имеют резонирующие полости, частично открытые в нужном направлении. При этом размеры и акустическое сопротивление открытого конца резонатора подбираются на основе специальных расчетов в зависимости от требуемой основной частоты (в колебательной системе с сосредоточенными параметрами) и эффективности резонатора. Резонаторы в виде, например, труб с открытыми концами не могут быть достаточно широкополосными, что не всегда удобно к реализации в концертных залах.
В обследованном чердачном перекрытии со стороны чердака над полностью замкнутым резонатором имеется настил из досок толщиной 50мм и историческая известково-гипсо-песчанная стяжка толщиной 100мм.
Под резонатором находится только зашивка чистого потолка досками толщиной 40мм. Поэтому верхние стенки резонаторов-усилителей, облицованные исторической известково-гипсо-песчанной стяжкой толщиной 100мм, значительно более жесткие, чем нижние (только доски толщиной 40мм без стяжки).
Цилиндрическая жесткость (сопротивление изгибу) стенок воздушных полостей со стороны чердака (со стяжкой) в 416 раз больше, чем стенок со стороны концертного зала (без стяжки). Наименьшее акустическое сопротивление стенок резонаторов-усилителей имеется только со стороны концертного зала.
Таким образом, в проекте архитектора Л.Бенуа исторической известково-гипсо-песчанной стяжке толщиной 100мм была отведена роль звукоизолятора, а также роль эффективного отражателя звука в полость резонаторов.
Из полости резонаторов усиленный звук (через тонкую и значительно менее жёсткую зашивку чистого потолка) поступал в концертный зал. Резонаторы (восемнадцать воздушных полостей) на потолке концертного зала Капеллы, являясь многорезонансными колебательными системами, за счёт жёсткой связи с потолком зала, возбуждают интенсивные колебания этого потолка в целом.
Однако историческая известково-гипсо-песчанная стяжка использовалась и как теплоизолятор.
Компоненты исторической известково-гипсо-песчанной стяжки толщиной 100мм – это известковый раствор, гипсовый раствор и наполнители, включая, например, прокалённый песок.
Коэффициент теплопроводности известкового раствора в условиях эксплуатации Санкт-Петербурга равен 0.81 Вт/м0С, а коэффициент теплопроводности гипсового раствора в гипсовых плитах равен 0.47 Вт/м0С.
Если указанные компоненты в стяжке находятся в равных долях, то коэффициент теплопроводности стяжки в целом можно оценить величиной 0.6 Вт/м0С. Материал с таким коэффициентом теплопроводности не может быть отнесен к материалам с высокой теплоизолирующей эффективностью. Эффективные теплоизоляторы, например, шлаковатные плиты Rockwol, или стекловолокнистые маты Ursa, или плиты Epaterm и многие другие, имеют коэффициенты теплопроводности 0.045–0.06 Вт/м0С , т.е. – в 10 раз меньше, чем историческая известково-гипсо-песчанная стяжка.
Отсюда ясно, что исторической известково-гипсо-песчанной стяжке в конструкции чердачного перекрытия архитекторы Л.Бенуа и М.Гейслер не отводили роль эффективного теплоизолятора. Да в этом, как показано ниже, в п. 2.5.7., и не было никакой необходимости.
Существует ли теплоэнергетический баланс концертного зала Капеллы в соответствии с современными теплотехническими нормами?
Из п.п. 2.3, 2.4 следует, что архитекторы Л.Бенуа и М.Гейслер известково-гипсо-песчанной стяжке в конструкции чердачного перекрытия дали главную роль не теплоизолятора, а роль звукоизолятора и отражателя звука из воздушных полостей (резонаторов-усилителей) в концертный зал.
Очевидно, что исторически роль отопителя чердака играл бывший жаровой канал, расположенный по всему контуру чердака, а ныне эту же функцию выполняет вентиляционный воздуховод с вентиляционными решетками. Задача сохранения тепла решалась весьма рационально, точно так же, как она решается и в современных зданиях, имеющих чердак ― пространство чердака нагревается до 9–140С.
Фактическое расчетное приведенное сопротивление теплопередаче в исторической конструкции всего чердачного перекрытия со стяжкой из известково-гипсо-песчанного раствора, с замкнутыми резонаторами и двумя дощатыми настилами 40 и 50мм равно 0.975 м2 0С/Вт.
Для оценки теплоэнергетического баланса здания концертного зала были использованы современные действующие методики.
Как показали теплотехнические расчеты в соответствии со строительными нормами, полный теплоэнергетический баланс концертного зала Капеллы обеспечен при достижении величины требуемого приведенного сопротивления теплопередаче чердачного перекрытия 0,529 м20С/Вт и температуры воздуха на чердаке у поверхности чердачного перекрытия 140С при расчетной температуре наружного воздуха -260С.
Расчётами было определено, что полный теплоэнергетический баланс концертного зала Капеллы обеспечен при температуре воздуха на чердаке у поверхности чердачного перекрытия 90С (при температуре наружного воздуха «минус» 260С). Этот результат справедлив, если чердачное перекрытие обладает приведенным сопротивлением теплопередаче, равным 0.975 м2 0С/Вт.
Именно такой величиной характеризуется обследованное чердачное перекрытие концертного зала Капеллы.
Очевидно, что в зимний период, при фактических температурах наружного воздуха выше расчётной температуры -260С, историческое чердачное перекрытие позволяет сохранить теплоэнергетический баланс концертного зала и при температуре воздуха на чердаке, гораздо ниже 90С.
2.5. О неопустимости изменений исторической конструкции чердачного перекрытия, которые могли бы привести к ухудшению акустики концертного зала Капеллы
Возможно ли заполнение воздушных полостей 18-ти резонаторов тепло- или звукоизолирующим материалом при реставрации?
Мы ранее установили, что заполнение воздушных полостей исторической конструкции чердачного перекрытия, предложенное специалистами по пожарной безопасности, тепло- или звукоизолирующим материалом по проекту ООО «Гипротеатр» могло бы привести к полной потере акустической функции потолка-деки.
В этом случае энергия многократных отражений от внутренних поверхностей резонаторов-усилителей поглощалась бы в материале заполнения полостей за счет преобразования звуковой энергии в тепловую.
Пожарная безопасность, о которой в данной ситуации ратовали соответствующие специалисты, успешно могла бы быть обеспечена другими, менее вредными для акустики зала способами.
Следовательно, воздушные полости должны быть сохранены не заполненными каким-либо тепло- или звукопоглощающим материалом.
Об окраске чистого потолка со стороны зрительного зала современными красками, например, нитроэмалями или красками на полиамидной основе также нужно сказать нечто важное.
Очевидно, что потолок является эффективным отражателем и рассеивателем звука с наилучшей характеристикой коэффициента отражения.
Чтобы сохранить эти функции и после реставрации принято, что применяемые для отделки потолка шпатлёвка и краска, должны быть близки по химическому составу историческим материалам, т.е. приготавливались на масляной основе.