Литмир - Электронная Библиотека
Содержание  
A
A

Попробуем немного изменить условия опыта и поместим между источником и регистрирующей частью (экраном или фотопластинкой) мишень из другого вещества. Картина распределения изменится; ведь электроны, вылетающие из источника, взаимодействуют теперь с другими атомами, однако принцип ее формирования останется прежним. Следовательно, распределения рассеянных электронов несут сведения о том, с каким веществом происходит взаимодействие. Речь опять-таки идет о вероятностной характеристике — разные атомы, на которых рассеиваются электроны, отбрасывают их в одну и ту же точку экрана с различной вероятностью.

Разумеется, результат любого такого опыта можно рассчитать заранее, решая уравнение Шредингера.

Таким образом, дебройлевские волны оказались лишь удобным вспомогательным приемом для вывода вероятностных характеристик поведения частиц в различных процессах. Такая точка зрения М. Борна, возможно, и не вызвала бы сильного потока споров, несмотря на чрезвычайную оригинальность. Более того, научная общественность с безусловным восторгом приняла бы ее в качестве временной меры спасения волновой механики, тем более что интерпретация, которой придерживался Э. Шредингер, была слишком уязвимой. Но ведь М. Борн настаивал на том, что вероятностные закономерности носят принципиальный характер и составляют суть квантовой теории.

Чтобы постичь преобразующую роль его позиции, следует обратить внимание вот на какие обстоятельства. Вероятностная точка зрения была известна и классической науке. Со случайными явлениями люди сталкивались и сталкиваются в самых разных областях практической деятельности.

Артиллерист, выпускающий снаряд по достаточно далекой (часто не видимой глазом) цели, никогда не может быть уверен в стопроцентном успехе. Как оценить ею мастерство во время учений? Дать один снаряд и предложить в качестве мишени скрытый за небольшим холмом макет танка? Но ведь известно опытный наводчик может и не попасть, а новичку, едва ли не впервые увидевшему орудие, удастся начисто смести макет. Случайность? Совершенно верно. Но нетрудно выяснить и закономерность. Уже при стрельбе несколькими снарядами выяснится, что взрывы опытного артиллериста происходят в среднем намного ближе к мишени, чем у новичка. Можно надеяться, что в первом случае макет будет разрушен гораздо быстрее. Источник случайности в этом примере вполне ясен — не видя цели, наводчик стреляет просто на определенное расстояние, потом немного меняет наводку, и так вплоть до попадания в мишень.

Классическая физика столкнулась со случайными событиями в процессе исследования природы тепловых явлений. Теплота обусловлена движением огромного количества молекул, образующих те или иные тела. В свою очередь, температуру тела можно определить через среднюю кинетическую энергию молекул. Пользоваться средними величинами в такой ситуации просто очень удобно и чаще всего вполне достаточно для практических целей. В классической физике предполагалось, что в принципе экспериментатор может проследить за траекторией каждой молекулы и, следовательно, полностью определить состояние микроскопического тела. Но поскольку это слишком сложная (в одном грамме обычного вещества насчитывается примерно 1023 частиц!) и не очень полезная процедура, лучше пользоваться вероятностным распределением молекул по скоростям, или по энергиям, или по импульсам и т. д.

В квантовой же теории ситуация радикально меняется. Теперь уже частицы подчиняются вероятностным закономерностям не потому, что определить истинную траекторию каждой из них практически слишком трудно. Такая задача, оказывается, вообще лишена смысла, поскольку траектории, попросту говоря, нет. Так микрочастицы потеряли еще одну «нормальную» черту поведения: двигаться по определенной траектории! Даже воровские орбиты электронов в атоме оказались всего лишь приближенным понятием — квантовая теория позволяет нам только узнать, с какой вероятностью электрон может находиться на том или ином расстоянии от атомного ядра.

Глубокая причина «потери траектории» электронами и другими микрочастицами была установлена немецким физиком-теоретиком В. Гейзенбергом, доказавшим знаменитые соотношения неопределенностей (соотношения Гейзенберга). Согласно этим соотношениям точное определение положения частицы в пространстве (ее координаты) и ее импульса или скорости в один и тот же момент времени невозможно.

Как мы увидим в следующей главе, увеличение точности в определении координаты приводит к увеличению погрешности в измерениях импульса, и наоборот. А «потеря траектории» происходит потому, что классическая траектория требует непременного знания положения частицы и ее скорости (или импульса) в любой момент времени. Таким образом, «потеря» видна непосредственно из точной формулировки соотношения Гейзенберга: произведение неопределенности импульса на неопределенность координаты больше или равно постоянной Планка.

Только теперь, в самом конце путешествия в квантованный мир, в нашем рассказе прозвучало имя человека, первым ступившего на его трудные тропы. Еще в 1900 году немецкий физик М. Планк, пытаясь преодолеть серьезные трудности классической физики, натолкнулся на замечательное линейное соотношение между энергией электромагнитного поля и его частотой. В качестве коэффициента пропорциональности он предложил ввести новую фундаментальную постоянную и оценил ее величину, исходя из опытных данных. Впоследствии эта постоянная, которая входит буквально во все уравнения и соотношения квантовой теории, получила название константы Планка. Она обозначается символом h и имеет размерность произведения энергии на время или импульса на координату (h B 10–27 эрг сек.). Константа Планка символически разделила историю физики на две части — классическую и квантовую — и, как мы только что убедились, сыграла выдающуюся роль в новом понимании закономерностей микромира.

Примерно три первых десятилетия после открытия элементарных частиц физики практически полностью занимались решением главной проблемы того времени — созданием атомной и молекулярной физики. Для планомерного наступления на тайны самих частиц еще не были готовы необходимые экспериментальные и теоретические средства. Но многие из них как раз и появились в процессе расшифровки атомно-молекулярной структуры вещества.

На рубеже 30-х годов произошел явный перелом. Воодушевленные блестящими и довольно быстрыми победами в исследовании атома, физики начали по-настоящему пристреливаться к атомным ядрам и их составляющим. И хотя очередное десятилетие стало скорее «ядерным», физика элементарных частиц успела обзавестись таким количеством новых загадок, что их решение стало совершенно безотлагательным делом. Делом чести физики XX века!

Глава третья. О высоких энергиях и глубоких идеях

Пределы наук похожи на горизонты: чем ближе подходят к ним, тем более они отодвигаются.

П. Буаст

Масштабы большого и малого

За последние 10–15 лет мы стали свидетелями интереснейшей филологической метаморфозы: все реже и реже в названиях конференций, учебников и обычных статей в научных журналах стало употребляться словосочетание «элементарные частицы», все чаще и чаще звучат другие слова «высокие энергии», «при высоких энергиях»… Что это — увлечение результатами экспериментов на гигантских ускорителях или окончательная потеря доверия к прилагательному «элементарный»?

Правильно будет сказать: и то и другое. Но еще правильнее — обратить внимание на те глубокие причины, которые превратили гонку за высокими энергиями в лейтмотив постижения микромира.

Прежде всего стоит обсудить масштабы интересующих нас явлений — недаром ведь говорят: все познается в сравнении. Но масштаб, в свою очередь, основа любого сравнения.

Современная физика действует в невообразимо большом диапазоне линейных размеров. Радиус наблюдаемого участка вселенной составляет примерно 1028 сантиметров, а наименьшие расстояния, доступные изучению на сегодняшний день, — 10–15 сантиметра. Представить себе столь большие и столь малые длины «в живых картинках» чрезвычайно сложно. От того, что я сообщу, например, что мерная лента длиной порядка радиуса вселенной будет весить не меньше нашей планеты, ничего к пониманию факта не прибавит. Человеческий опыт непосредственного восприятия расстояний ограничен интервалом от долей миллиметра до 1–3 километров. Вне этого интервала требуется включать некоторое воображение. Оно может быть изрядно натренировано для того, чтобы свободно измерять на глазок добрые десятки километров, как это бывает у летчиков, или считать маковое зернышко слишком большой заготовкой для вытачивания точной копии роденовского «Мыслителя», как это встречается среди умельцев — потомков великого Левши.

14
{"b":"67728","o":1}