А вот на Востоке тогда христианства не было. И ученые, уехавшие из Александрии в Персию и Сирию, продолжили научные работы. Эпоха арабского халифата, которую называют Золотым веком ислама, обязана своим научным взлетом именно античными знаниям; они стали базой для развития науки в арабском мире. Одного только Евклида переводили и обсуждали в своих работах сотни арабских авторов… Мировая научная столица перемещается в Багдад, а главным языком науки в мире становится арабский. Халифы создают в Багдаде аналог александрийского Мусейона.
И раз уж мы туда попали, вкратце пробежимся по научным достижениям халифата. Арабская империя сегодня считается светочем культуры и носителем цивилизации в ту эпоху, когда в Европе был «выключен свет». Во многом это справедливо, но есть интересные нюансы…
Математика Востока носила более приземленный характер. Она практически вся целиком сосредоточилась на решении практических задач, связанных с торговлей, землемерием, механикой, строительством… Таких чудесных абстрактно-теоретических высот, каких достигли греки перед падением, у арабов не было.
Мусульмане блистательно овладели пилотированием «Боингов»… простите, оговорился… достижениями западной цивилизации в области математики и астрономии, однако творческого развития усвоенное почти не получило. Например, попытались арабы ввести десятичные дроби в Х веке, но не преуспели: никому эти дроби на фиг были не нужны аж до XV века. Отрицательные числа арабы тоже знали, но широкое распространение они получили лишь спустя длительное время. Омар Хайям, известный всем, как поэт, оставил математический труд, в котором рассказывал о путях решения кубических уравнений. Впрочем, их умел решать еще Архимед методом конических сечений, так что Хайям всего лишь развивал чужие идеи.
Нет, какой-то след в науке арабы оставили, конечно, иначе не было бы в нашем языке таких арабских слов, как «алгебра» и «алгоритм». Но в целом они были эпигонами. Хотя вклад в распространение наук своими завоеваниями и торговлей внесли. Вообще, торговля и путешествия весьма способствуют распространению цивилизации. В XI веке Аль-Бируни, например, несколько лет прожил в Индии. Там он познакомил индусов с великими достижениями античной науки и даже перевел некоторые труды греков на санскрит. Впрочем, арабы не только учили индусов, но и учились у них. Те самые цифры, которые мы теперь называем арабскими, арабы позаимствовали у индусов и до сих пор, между прочим, называют их индийскими…
Во времена Аль-Бируни уже давно были известны тригонометрия и те таблицы, которые мы в школе называли таблицами Брадиса. Только тогда они назывались таблицами Птолемея, и по ним можно было с хорошей точностью определять синусы (шаг таблицы составлял 15 угловых минут). Кроме синуса и косинуса арабы использовали тангенс, котангенс и секанс. А также имели представления об иррациональных числах.
Арабским математикам удалось высчитать число «пи» с точностью до 17-го знака после запятой! А синусы всех углов с шагом в одну секунду ими к XIII веку были вычислены с точностью до 9-го знака… Однако и это было, пусть и блистательным, но всего лишь уточнением греческих и египетских знаний.
В том же XIII веке в арабском мире выходит математический трактат, который рассказывает о разложении бинома и оформляет тригонометрию как самостоятельный раздел математики. Этот трактат попадает в Европу и кладет там начало тригонометрическому буму. Из которого впоследствии родится координатное картографирование, к коему я вас постепенно и подвожу…
Глава 2
История с астрономией
Теперь самое время посмотреть на небо. Математический экскурс мы закончили тригонометрией. С нее и начнем экскурс к звездам.
В своих астрономических вычислениях тригонометрию использовали еще древние шумеры за много тысяч лет до арабов и европейцев. А самые первые признаки астрономических знаний у человечества прослеживаются с шестого тысячелетия до нашей эры. Иными словами, восемь тысяч лет назад люди зачем-то вели наблюдения за небесными светилами, строили обсерватории. Для чего дикарям неолита астрономические знания?
Одной из самых известных и, я бы сказал, набивших оскомину обсерваторий каменного века является британский Стоунхендж. Сооружению этому тысячи лет, и оно представляет собой огромные концентрические круги диаметром до 30 метров, сложенные из 38 пар огромных обтесанных блоков – недаром подобные сооружения называются мегалитами, то есть гигантскими камнями. Мегалиты найдены на всех континентах, кроме Австралии и, естественно, Антарктиды.
Некоторые камни Стоунхенджа образуют как бы гигантские буквы «П»: два поставленных на попа тесаных камня, а сверху – каменная перекладинка. С помощью этих каменных «рамок» определяли день летнего солнцестояния: именно внутри «буквы П» в этот день восходило Солнце. Любопытно, что высота вертикальных камней достигает 8,5 метра, а вес 28 тонн. Неплохое достижение для строительной техники каменного века!..
Когда через тысячи лет после строительства Стоунхенджа в Британию пришли римские завоеватели, они увидели перед собой местных жителей – диких и полуголых, с разрисованными синей краской лицами. Которые, как вы понимаете, совсем не были похожи на людей, увлекающихся астрономией. Но их далекие предки, тем не менее, зачем-то вели астрономические наблюдения. А, может быть, это были и не предки? Может, кто-то другой строил обсерваторию и вел наблюдения, пока вокруг бегали закутанные в звериные шкуры местные туземцы с каменными топорами?
Идем дальше… Как я уже говорил, довольно развитые знания в области астрономии имели еще жители Шумера (шесть тысяч лет назад). Эстафетную палочку у них перехватил Вавилон (четыре тысячи лет назад). От вавилонских астрономов до нас дошло множество таблиц. Именно вавилоняне выделили основные созвездия, разделили небесную сферу на 360° и разработали ту самую многократно упомянутую тригонометрию, без которой сложные наблюдения за светилами были бы невозможны. Вавилоняне разбили год на 12 месяцев, открыли законы движения планет, научились предсказывать затмения, обнаружили так называемый «метонов цикл».
Не отставали от них и египтяне. У последних тоже был немалый астрономический багаж, похожий на вавилонский. У египтян год также состоял из 12 месяцев, неделя из 7 дней, а сутки из 24 часов. И они тоже имели представление о метоновом цикле.
Опять-таки по причинам недолговечности папируса мы не очень много знаем о глубинах познания вселенной египтянами. Но знаем, что греки учились у египтян не только математике, но и астрономии.
Теперь глянем, что творилось в этом смысле в древнем Китае. Присмотревшись, мы увидим, что китайские астрономические знания весьма похожи на египетские и вавилонские того же периода (рубеж III–II тысячелетий до н. э.) Китайцы с большим удовольствием смотрели в небо. Они открыли комету Галлея за тысячи лет до Галлея, научились предсказывать солнечные затмения, обнаружили неравномерности в движении Луны, измерили сидерические и синодические периоды для всех планет, открыли метонов цикл. Правда, сутки они делили не на 24, а на 12 часов.
От цивилизации майя, успешно разрушенной христианами, до нас дошло совсем немного письменных астрономических текстов. Но из них ясно, что майянская астрономия была на весьма высоком уровне: индейцы знали синодические периоды обращения пяти планет Солнечной системы, имели очень точный календарь и на момент знакомства с гуманными христианами вели свое летоисчисление уже более четырех тысяч лет. Календарь индейцев майя, не знавших колеса и практиковавших человеческие жертвоприношения, поражает своей точностью. Майянский календарь точнее григорианского: в первом год длится 365,242129 дня, а в более позднем григорианском – 365,2425 дня. Для сравнения: в римском календаре 365,25 дня.
То, что более поздний григорианский календарь точнее древнеримского – понятно и нормально: прогресс. Но почему более древний календарь дикой народности, не знавшей железа, плуга, колеса и гончарного круга, на тысячи лет опередил прогресс?.. А ведь помимо этого у майя были и лунный календарь, и венерианский. Зачем?