Литмир - Электронная Библиотека
A
A

Итак, нам приходится вернуться к определению Кирхгофа: сила равна массе, умноженной на ускорение. Теперь этот «закон Ньютона» выступает уже не как экспериментальный закон, а только как определение. Но это определение еще недостаточно, так как мы не знаем, что такое масса. Правда, он позволяет нам вычислить отношение двух сил, приложенных к одному и тому же телу в разные моменты, но он ничего не сообщает нам об отношении двух сил, приложенных к двум различным телам.

Для дополнения его придется снова прибегнуть к третьему закону Ньютона (равенство действия и противодействия), рассматривая последний опять-таки не как экспериментальный закон, а как определение. Два тела А и В действуют друг на друга; ускорение А, умноженное на массу А, равно действию В на А, таким же образом, произведение ускорения В на его массу равно противодействию А на В. И так как по определению действие равно противодействию, то массы А и В будут обратно пропорциональны ускорениям двух этих тел. Этим отношение наших двух масс определено, и дело опыта – проверить, что это отношение постоянно.

Все было бы хорошо, если бы два тела А и В были единственными, с которыми приходится считаться, и были изолированы от действия остального мира. Но этого нет; ускорение тела A зависит не только от действия тела В, но и от действия множества других тел: С, D и т. д. Поэтому, чтобы применить предыдущее правило, нужно было бы разложить ускорение тела A на несколько составляющих и выделить из них ту, которая обусловлена действием тела В.

Это разложение было бы еще возможно, если бы мы допустили, что действие С на А просто прикладывается к действию В на А, так что присутствие тела С не изменяет действия В на А и присутствие В не изменяет действия С на А; следовательно, если бы мы допустили, что любые два тела притягиваются, что их взаимное действие направлено по соединяющей их прямой и зависит только от их расстояния, словом – если бы мы допустили гипотезу центральных сил.

Известно, что для определения масс небесных тел пользуются совершенно иным принципом. Закон тяготения учит нас, что притяжение двух тел пропорционально их массам; если r есть расстояние между ними, m и m’ – их массы, K – некоторая постоянная, то притяжение их будет равно

Теорема века. Мир с точки зрения математики - i_002.png

То, что измеряют в этом случае, не есть масса как отношение силы к ускорению – это есть масса притягивающая; это – не инерция тела, а его притягательная способность.

Применение такого косвенного приема не является теоретически необходимым. Легко могло бы случиться, что притяжение было бы обратно пропорционально квадрату расстояния, не будучи пропорционально произведению масс; оно равнялось бы

Теорема века. Мир с точки зрения математики - i_003.png

Но равенство:

Теорема века. Мир с точки зрения математики - i_004.png

не имело бы смысла. При таких условиях все-таки было бы возможно на основании наблюдений над относительными движениями небесных тел измерять их массы.

Но имеем ли мы право допускать гипотезу центральных сил? Верна ли она в точности? Можно ли быть уверенным, что она никогда не окажется в противоречии с опытом? Кто взял бы на себя смелость утверждать это? А ведь если нам придется оставить эту гипотезу, то рушится и все здание, воздвигнутое с таким трудом. И тогда мы уже не имеем более права говорить о составляющей ускорения А, зависящей от действия В. Мы не имеем никакого средства отличить ее от той, которая обусловлена действием С или другого тела. Правило для измерения масс становится неприложимым.

Что же тогда остается от принципа равенства действия и противодействия? Если гипотеза центральных сил отброшена, то этот принцип, очевидно, должен быть сформулирован так: геометрическая равнодействующая всех сил, приложенных к различным телам системы, изолированной от всякого внешнего воздействия, равна нулю. Или, иными словами: движение центра тяжести этой системы является прямолинейным и равномерным.

Здесь-то, казалось бы, мы имеем средство определить массу: положение центра тяжести зависит, очевидно, от значений, какие мы припишем массам; надо распределить эти значения таким образом, чтобы движение центра тяжести было прямолинейно и равномерно; если третий закон Ньютона верен, это всегда возможно и может быть выполнено вообще только одним способом.

Однако дело в том, что не существует системы, которая была бы изолирована от всякого внешнего воздействия; все части Вселенной подвержены более или менее сильному воздействию со стороны всех других частей. Закон движения центра тяжести строго верен только в применении ко всей Вселенной в целом.

Но в таком случае, чтобы извлечь из него значения масс, нужно было бы наблюдать движение центра тяжести Вселенной. Нелепость этого следствия очевидна; мы знаем только относительные движения; движение центра тяжести Вселенной навсегда останется для нас неизвестным.

Итак, у нас не остается ничего, и все наши усилия были напрасны; нет иного выхода, как остановиться на следующем определении, которое является только признанием нашего бессилия: массы суть коэффициенты, которые удобно ввести в вычисления.

Мы могли бы перестроить всю механику, приписывая всем массам другие значения. Эта новая механика не была бы в противоречии ни с опытом, ни с общими принципами динамики (принципом инерции, пропорциональностью сил массам и ускорениям, равенством действия и противодействия, прямолинейным и равномерным движением центра тяжести, законом площадей). Только уравнения этой новой механики были бы менее просты. Говоря точнее, менее просты были бы только первые члены, т. е. те, которые нам уже открыл опыт. Быть может, удалось бы изменять массы в пределах малых величин так, чтобы простота полных уравнений ничего бы не теряла и не приобретала.

Герц задался вопросом, строго ли верны принципы динамики. «Многим физикам, – говорит он, – покажется немыслимым, чтобы самый отдаленный опыт мог когда-нибудь что-нибудь изменить в незыблемых принципах механики; однако же то, что исходит из опыта, всегда может быть и поправлено опытом».

После того, что мы сейчас говорили, все эти опасения являются излишними. Принципы динамики выступали перед нами сначала как опытные истины; но мы вынуждены были пользоваться ими как определениями. Только по определению сила равна произведению массы на ускорение; вот принцип, который отныне поставлен вне пределов досягаемости любого будущего опыта. Точно так же и действие равно противодействию только по определению. Но тогда, скажут, эти недоступные проверке принципы абсолютно лишены всякого значения; опыт не может им противоречить; но они не могут и научить нас ничему полезному; зачем же тогда изучать динамику?

Такой слишком поспешный приговор был бы несправедлив. Правда, в природе нет системы, совершенно изолированной, совершенно изъятой от всякого внешнего воздействия; но есть системы почти изолированные.

Наблюдая подобную систему, можно изучать не только относительное движение ее различных частей – одних по сравнению с другими, – но и движение ее центра тяжести относительно других частей Вселенной. Тогда мы убеждаемся, что движение этого центра тяжести почти прямолинейно и равномерно сообразно с третьим законом Ньютона.

Это – опытная истина; но она не может быть поколеблена опытом. В самом деле, что мог бы открыть нам более точный опыт? Он открыл бы, что закон только приближенно верен; но это мы уже знаем.

20
{"b":"671299","o":1}