Литмир - Электронная Библиотека
A
A

Трудность решения этих естественно возникающих вопросов происходит главным образом от того, что руководства по механике не вполне ясно различают, где опыт, где математическое суждение, где условное соглашение, где гипотеза.

Это еще не все:

1) Абсолютного пространства не существует; мы познаем только относительные движения; между тем механические факты чаще всего излагают так, как если бы существовало абсолютное пространство, к которому их можно было бы отнести.

2) Не существует абсолютного времени; утверждение, что два промежутка времени равны, само по себе не имеет смысла и можно принять его только условно.

3) Мы не способны к непосредственному восприятию не только равенства двух промежутков времени, но даже простого факта одновременности двух событий, происходящих в различных местах; я разъяснил это в статье, озаглавленной «La mesure du temps»[6].

4) Наконец, наша евклидова геометрия есть лишь род условного языка; мы могли бы изложить факты механики, относя их к неевклидову пространству, которое было бы основой, менее удобной, но столь же законной, как и наше обычное пространство; изложение слишком осложнилось бы, но осталось бы возможным.

Таким образом, абсолютное пространство, абсолютное время, даже сама геометрия не имеют характера вещей, обусловливающих собой механику; они так же мало предваряют существование механики, как мало французский язык логически предваряет существование истин, выражаемых по-французски.

Можно было бы попытаться изложить основные законы механики на языке, независимом от всех этих соглашений; тогда, без сомнения, можно было бы лучше отдать себе отчет в том, что представляют эти законы сами по себе; как раз это и попытался сделать (по крайней мере отчасти) Андрад в своих «Leçons de Mécanique physique».

Формулировка этих законов оказалась бы, конечно, гораздо более сложной, потому что все указанные выше соглашения и созданы именно для того, чтобы сократить и упростить эту формулировку.

Здесь я оставляю в стороне все эти трудности, за исключением вопроса об абсолютном пространстве. Я далек от мысли пренебрегать ими; но мы достаточно разобрали их в двух первых частях.

Итак, я допущу временно абсолютное время и евклидову геометрию.

Принцип инерции. Тело, на которое не действует никакая сила, может двигаться только прямолинейно и равномерно.

Есть ли это истина, присущая a priori нашему разуму? Если бы это было так, то как же не знали ее греки? Как могли они думать, что движение прекращается, как только перестает действовать вызвавшая его причина, или что всякое тело, не встречающее никаких препятствий со стороны, принимает круговое движение, как наиболее совершенное из всех движений?

Говорят, что скорость тела не может измениться, раз нет основания для ее изменения; но не можем ли мы с таким же правом утверждать, что не может измениться положение тела или кривизна его траектории, раз внешняя причина не вызывает их изменения?

Если принцип инерции не принадлежит к числу априорных истин, то не значит ли это, что мы имеем в нем экспериментальный факт? Но разве когда-нибудь экспериментировали над телами, на которые не действовала никакая сила? И как можно было бы получить уверенность, что на эти тела не действует никакая сила? Обыкновенно ссылаются на пример бильярдного шара, очень долгое время катящегося по мраморному столу; но на каком основании мы говорим, что на него не действует никакая сила? Не на том ли, что он слишком удален от всех других тел, чтобы испытывать от них сколько-нибудь заметное действие? Однако он не дальше от земли, чем в том случае, если бы был свободно брошен в воздухе; а всякий знает, что в таком случае он подвергся бы влиянию тяжести, обусловленному земным притяжением.

Преподаватели механики обычно быстро излагают пример с шаром; но они прибавляют, что принцип инерции проверяется косвенно в своих следствиях. Это – неправильное выражение; очевидно, они хотят сказать, что можно проверить различные следствия более общего принципа, по отношению к которому принцип инерции является только частным случаем.

Этот общий принцип я предложу сформулировать так:

Ускорение тела зависит только от положения этого тела и соседних тел и от их скоростей. Математик сказал бы, что движения всех материальных частиц Вселенной определяются дифференциальными уравнениями второго порядка.

Чтобы уяснить, что здесь мы имеем дело с естественным обобщением закона инерции, я позволю себе привести один воображаемый случай. Выше я указывал, что закон инерции не присущ нам a priori; другие законы были бы столь же хорошо, как и он, совместимы с принципом достаточного основания. Когда на тело не действует никакая сила, то мы могли бы вообразить, что неизменным является не скорость его, а его положение или его ускорение.

Итак, представим себе на минуту, что один из этих двух гипотетических законов есть закон природы и заступает место нашего закона инерции. Каково было бы его естественное обобщение? Поразмыслив минуту, мы это уясним.

В первом случае пришлось бы допустить, что скорость тела зависит только от его положения и от положения соседних тел; во втором – что изменение ускорения тела зависит только от положения этого тела и соседних тел, от их скоростей и от их ускорений.

Или, говоря математическим языком, дифференциальные уравнения движения были бы в первом случае первого порядка, во втором – третьего.

Видоизменим несколько наш воображаемый пример. Представим себе мир, аналогичный нашей Солнечной системе, лишь с тем отличием, что здесь все орбиты планет благодаря чистой случайности не имеют эксцентриситетов и наклонений. Представим себе далее, что массы этих планет слишком ничтожны, чтобы их взаимные возмущения были ощутимы. Астрономы, населяющие одну из этих планет, не преминули бы заключить, что орбита светила может быть только круговой и параллельной определенной плоскости; тогда положения светила в данный момент было бы достаточно для определения его скорости и всей его траектории. Закон инерции, который они установили бы, был бы первый из двух гипотетических законов, о которых я только что говорил.

Вообразим теперь, что вдруг через эту систему проходит с огромной скоростью массивное тело, пришедшее из отдаленных созвездий. Все орбиты окажутся сильно возмущенными. Но это еще не очень смутило бы наших астрономов; они догадались бы, что это новое светило является единственным виновником всего зла. Стоит ему удалиться, – сказали бы они, – и порядок восстановится сам собой; конечно, расстояния планет от Солнца уже не станут вновь такими же, какими они были до катастрофы, но когда не будет более возмущающего светила, орбиты снова станут круговыми. И только тогда, когда возмущающее тело было бы уже далеко, а орбиты, вместо того чтобы опять стать круговыми, превратились бы в эллиптические, – только тогда эти астрономы заметили бы свою ошибку и необходимость переделать всю свою механику.

Я несколько подробнее остановился на этих гипотезах, потому что, как мне думается, уяснить себе содержание нашего обобщенного закона инерции можно, только сопоставляя его с противоположным допущением.

Мы возвращаемся теперь к этому обобщенному закону инерции. Спрашивается, проверен ли он в настоящее время на опыте, и возможно ли это вообще? Когда Ньютон писал свои «Начала»[7], он смотрел на эти истину как на выработанную и доказанную экспериментально. Таковой она была в его глазах не только благодаря антропоморфному представлению, о котором речь будет дальше, но благодаря трудам Галилея; она была таковой и в силу законов Кеплера; действительно, согласно этим законам траектория планеты полностью определяется ее начальными положением и скоростью; а это как раз то, чего требует наш обобщенный принцип инерции.

Чтобы этот принцип оказался истинным только по внешнему виду, чтобы можно было опасаться, что когда-нибудь он будет заменен одним из принципов, которые я сейчас противопоставлял ему, пришлось бы допустить, что мы введены в заблуждение какой-нибудь удивительной случайностью вроде той, которая в развитом мною выше примере ввела в заблуждение наших воображаемых астрономов.

вернуться

6

Revue de Métaphysique et de Morale. Janvier, 1898. Т. 6. Р. 1–13. Статья вышла в виде второй главы книги «Ценность науки», см. наст. изд. Ранее перевод ее публиковался: Пуанкаре. Избранные труды. Т. 3. М.: Наука, 1974. С. 419; Принцип относительности. М.: Атомиздат, 1973. – Прим. ред.

вернуться

7

Newton. PhiIosophiae Naturalis Principia Mathematica, 1686. Русский перевод: И. Ньютон. Математические начала натуральной философии / Пер. А. Н. Крылова // Собрание трудов академика А. Н. Крылова, Т. VII. М.; Л.: Изд. АН СССР, 1936. – Прим. ред.

18
{"b":"671299","o":1}