Примечание 1.3. Измерение энергии и мощности
Официальное определение джоуля – работа, выполненная, когда сила в один ньютон действует на дистанции в один метр. Другой вариант определения базовой единицы энергии – через требуемое количество тепла. Одна калория – количество тепла, необходимое, чтобы поднять температуру 1 см3 воды на 1 °C. Это очень мало: чтобы сделать то же самое с 1 килограммом воды, нужно в тысячу раз больше энергии, или одна килокалория (полный список префиксов к единицам измерения приведен в разделе «Базовые единицы измерения» в приложении). Учитывая эквивалентность тепла и работы, все, что нужно для превращения калорий в джоули – помнить, что одна калория равняется примерно 4,2 джоуля. Для до сих пор распространенной неметрической единицы, британской тепловой единицы, преобразование столь же простое. Одна бте равна примерно 1000 Дж (если точно, то 1055). Хороший сравнительный критерий – средняя дневная потребность в пище. Для взрослого в состоянии умеренной активности она обычно варьируется в пределах 2–2,7 Мкал, или примерно 8-11 Мдж, а 10 Мдж можно получить, съев 1 кг цельнозернового хлеба.
В 1782 году Джеймс Уатт начерно рассчитал, что лошадь на мельнице работает примерно со скоростью 32 400 футо-фунтов в минуту, и на следующий год он округлил это значение до 33 000 футо-фунтов (Dickinson 1939). Он предположил, что средняя скорость хода животного около 3 футов в секунду, но мы не знаем, где он взял значение средней тяги в 180 фунтов. Некоторые крупные лошади могли выдавать такую тягу, но большинство лошадей в Европе XVIII века не смогли бы обеспечить одну лошадиную силу из расчетов Уатта. Сегодняшний стандарт мощности, ватт, равен джоулю в секунду. Лошадиная сила составляет примерно 750 ватт (если точно, то 745,699). Потребление 8 Мдж пищи в день соотносится с номинальной мощностью в 90 Вт (8 Мдж/24 ч х 3600 с), меньше, чем у стандартной лампы накаливания (100 Вт). Тостер с двумя отверстиями требует 1000 Вт, или 1 КВт; небольшие машины выдают примерно 50 КВт; крупная электростанция на угле или ядерном топливе производит электричества на 2 ГВт.
Плотность мощности определяет потребление или производство энергии на единицу площади, и поэтому она является важной структурной характеристикой разных систем (Smils 2015b). Например, размер городов во всех традиционных обществах зависел от древесины как топлива, а возможность получения древесного угля очевидным образом ограничивалась изначально низкой плотностью мощности у производства фитомассы (примечание 1.5, рис. 1.4). Плотность мощности постоянного годового прироста деревьев в умеренном климате в лучшем случае равняется 2 % от плотности мощности энергетического потребления для традиционного городского обогрева, приготовления пищи и мануфактурного производства. Поэтому городам требовалась территория в 50 раз больше их собственной для обеспечения топливом. Именно это ограничивало их размеры, даже когда другие ресурсы, такие как вода и пища, имелись в изобилии.
Примечание 1.4. Значения плотности энергии продуктов питания и видов топлива
Источники: значения плотности энергии для отдельных видов продуктов питания приведены в Watt (1973), Jenkins (1993) b USDA (2011).
Другая величина, приобретающая все большее значение с ростом индустриализации – эффективность преобразования энергии. Это соотношение выхода/ входа описывает работу преобразователей энергии, будь то печи, двигатели или элементы освещения. И хотя мы не можем ничего сделать с энтропийным рассеиванием, мы можем увеличить эффективность преобразования, снизив количество энергии, необходимое для выполнения отдельных задач (примечание 1.6). Существуют фундаментальные (термодинамические, механические) ограничения для этого улучшения, и мы уже во многих процессах подошли к лимиту практической эффективности, хотя в большинстве случаев, например, для широко распространенных преобразователей вроде двигателей внутреннего сгорания и осветительных приборов еще достаточно возможностей усовершенствования.
Рисунок 1.4. Робота углежога в начале XVII века, Англия. Предоставлено: John Evelyn, «Silva»
Примечание 1.5. Плотность энергии растительного топлива
Фотосинтез превращает менее 0,5 % поступающего солнечного излучения в новую фитомассу. Лучшая годовая продуктивность древесного топлива для быстрорастущих видов (тополь, эвкалипт, сосна) составляет не больше чем 10 т/га, ну а в более засушливых регионах значение колеблется между 5 и 10 т/га (Smil 2015b). С плотностью энергии сухого дерева в среднем около 18 ГДж/т добыча в 10 т/га обеспечит плотность мощности около 0,6 Вт/м2: (10 т/га х 18 ГДж)/3,15 х 107 (секунд в год) = -5708 Вт; 5708 Вт/10000 м2/га = -0,6 Вт/м2. Большому городу XVIII века требовалось по меньшей мере 20–30 Вт/м2 на застроенную площадь для обогрева, приготовления пищи и мануфактурного производства, так что древесное топливо пришлось бы добывать с территории в 30–50 раз большей, чем сам город.
Древесный уголь был единственным бездымным топливом доиндустриальной эпохи, которое все традиционные цивилизации использовали для обогрева домов. А его изготовление сопровождается значительной потерей энергии, ведь даже в середине XVIII века типичное соотношение каменный уголь/дерево составляло один к пяти, что значило в терминах энергии (сухое дерево – 18 ГДж/т, древесный уголь, теоретически чистый углерод, – 29 ГДж/т) эффективность преобразования всего 30 % (5 х 18/29 = 0,32). Так что плотность мощности древесины, предназначенной для получения каменного угля, всего около 0,2 Вт/м2. Поэтому большим доиндустриальным городам, расположенным в умеренном климате северного полушария и зависящим от каменного угля (Пекин может быть хорошим примером), требовалась покрытая лесом территория по меньшей мере в 100 раз больше их собственного размера, чтобы не остаться без топлива.
Примечание 1.6. Повышение эффективности и парадокс Джевонса
Технический прогресс ведет за собой множество впечатляющих достижений в области эффективности, и история освещения является одним из лучших примеров (Nordhaus 1998; Fouquet and Pearson 2006). Свечи превращают всего лишь 0,01 % химической энергии сала или воска в свет. Лампочки Эдисона, изобретенные в 1880-х годах, были примерно в десять раз эффективнее. К 1900 году угольные электростанции имели эффективность примерно 10 %, лампочки превращали не более 1 % энергии в свет, отсюда ясно, что лишь 0,1 % химической энергии угля становилось светом (Smil 2005). Лучшая газовая турбина парогазового цикла (используется горячий газ, покидающий газовую турбину, чтобы производить пар для паровой турбины) в наше время имеет эффективность 60 %. Флуоресцентные лампы могут похвастаться 15 % эффективности, как и диодные светильники (USDOE 2013). Это значит, что около 9 % природного газа превращается в свет, выигрыш в 90 раз по сравнению с концом XIX века. Такой выигрыш сохраняет капитал и уменьшает текущие издержки, а также снижает давление на окружающую среду.
Но в прошлом рост эффективности преобразования энергии не всегда приводил к реальной экономии. В 1865 году Стэнли Джевонс (1835–1882), английский экономист, указал, что введение более экономичных паровых машин сопровождалось значительным увеличением потребления угля, и сделал такой вывод: «Будет ошибочным считать, что экономия при использовании разных видов топлива приведет к уменьшению потребления. На самом деле все обстоит наоборот. Как правило, новые методы экономии ведут к увеличению потребления в соответствии с принципом, учтенным во множестве параллельных случаев» (Jevons 1865, 140). Реальность этого явления подтвердили многочисленные исследования (Herring 2004, 2006; Poliment et al. 2008), но в богатых странах, где высок объем потребляемой энергии на душу населения и где достигнут уровень насыщения, этот эффект слабеет. В результате реакция на повышение эффективности на уровне конечного использования часто мала и еще уменьшается со временем, и в масштабах целой экономики выгода может быть очень небольшой, если вообще быть (Goldstein, Martinez, and Roy 2011).