2.1.1. Дендриты
Дендриты (название происходит от греческого слова dendron – «дерево») формируют что-то вроде чудовищно тесного, забитого перекрещивающимися ветками леса. Лес состоит из миллиардов деревьев с сотнями миллиардов веток и тысячами миллиардов листьев. Все ветки и листья перекрещиваются между собой, соединяясь таким образом, чтобы сигнал, бегущий по ним, мог в мгновение ока попасть из одного края леса в другой. Это настоящий зачарованный лес – он поразительно красив и умеет делать разные невероятные колдовские штуки.
Дендриты – это разветвленные отростки нейронов, нервных клеток. Они протягивают свои ветки-щупальца в самых разных направлениях, в зависимости от функции клетки, и на самом деле напоминают деревья, от которых получили свое название – выглядят то как сосна или дуб, а то как могучий баобаб или секвойя.
У нервных отростков, как у деревьев, есть и «листья», названные учеными шипиками[4]. Точно так же, как листья на дереве работают приемниками солнечного света для фотосинтеза, дендриты и их шипики впитывают информацию, приходящую от терминалей-передатчиков других нейронов (следует отметить, что, однако, не все типы нейронов обладают отростками-дендритами с шипиками).
Как и в лесу, нейронные ветки и листья дендритов не остаются в покое ни на мгновение. Только в последнее десятилетие была доказана ключевая роль дендритов в феномене «пластичности мозга», то есть способности адаптировать нейронные связи к сигналам, получаемым из внешнего мира [см. стр. 87].
Способность к обучению и память зависят не только от мощности (или слабости) синаптических контактов, но и от способности мозга выращивать новые дендриты и новые шипики и их готовности к адаптации [см. стр. 179, 83].
Пластичность мозга не является абстрактной функцией: мозг меняется физически, в нем отрастают новые ветки и листья дендритов и отсыхают старые, происходят постоянно процессы, не останавливающиеся никогда ни в одном из лесов мира, где бы они ни располагались – в наружном мире или в нашем мозге.
2.1.2. Сома
Сома по сути является центром управления нейроном и представляет собой основное тело нервной клетки, из которого вырастают дендриты и аксоны. Тело производит энергию, необходимую для работы нейрона, следит за ростом отдельных своих частей и их соединяет в общее целое. Сома состоит из внешней мембраны, состоящей из молекул жира и аминокислот, которые защищают нейрон от воздействия внешней среды.
Внутри клетки таятся сложнейшие специализированные механизмы, такие как ядро клетки, служащее и архивом информации, и фабрикой по производству РНК. В ядре сохраняется молекула ДНК, на которой записана вся информация, необходимая для создания важных для выживания организма белков, и там же развернуто производство РНК, из которой они и производятся.
Как и в любой другой клетке тела, в соме нейрона действуют митохондрии, которые превращают кислород и глюкозу в топливо, АТФ (аденозинтрифосфат). В нейронах митохондрии особенно мощные и многочисленные: никакая другая клетка не обладает таким завидным аппетитом, как нейрон [см. стр. 101].
2.1.3. Аксон
Дендритов, служащих приемниками информации, у нейрона много, а аксон – один. Всякая нервная клетка обладает только одним-единственным выходом, путем передачи информации соседям.
Дендриты ветвятся в окрестностях сомы, в радиусе нескольких микрон, аксон же может протянуться на десятки сантиметров; в масштабах клетки это невообразимое, космическое расстояние. Дендриты по мере удаления от сомы делаются все тоньше, в точности как ветки настоящих деревьев; но аксон сохраняет свой диаметр неизменным, чтобы только на самом конце распасться на множество крошечных передатчиков для осуществления синаптической связи со множеством иных нейронов. Эти передатчики называются терминалями аксона.
Между терминалями-приемниками и терминалями-передатчиками нейрона есть еще одна существенная разница: химический сигнал, поступающий через дендриты, может быть сильным или слабым или любым промежуточным между этими пределами – электрический же импульс, проходящий через аксон, может только быть или не быть, «вкл» или «выкл». Проводя аналогию с миром компьютеров, можно сказать, что дендриты являются типичным примером аналогового устройства, в то время как аксоны – цифрового.
Аксоны должны не просто пересылать информацию на огромные по клеточным меркам расстояния, но и делать это максимально быстро. В экстремальных случаях скорость достигает 720 км в час, то есть 200 метров в секунду. Скорость передачи информации зависит не только от диаметра аксона, но и от толщины миелиновой оболочки, защищающей сигнал от внешних помех. Интенсивность использования конкретного аксона мозгом напрямую зависит от количества миелина на нем [см. стр. 179]. Если сравнивать аксон с автострадой, по которой мчат автомобили, то получается как бы обратная картина: чем больше машин проедет по дороге, тем скорее она придет в негодность; аксон же от многократного использования, наоборот, обрастает жирком.
Формирование аксона начинается с небольшого сжатия клеточной сомы – образуется конус роста аксона. В нем находится нечто вроде микроскопического вычислительного центра, совершающего сложение и вычитание: как только результат вычислений переходит некий порог [см. стр. 36], нейрон выстреливает, посылая сигнал к действию. Электрический потенциал клеточной мембраны за тысячные доли секунды резко возрастает: это похоже на стрельбу из пулемета. В секунду подобных событий происходит десятки и даже сотни.
В миелиновой оболочке есть крошечные разрывы, расположенные на равном расстоянии друг от друга (эти разрывы называются перехватами Ранвье). В разрывах находится целая система канальцев, через которые в клетку входят и выходят ионы натрия, отвечающие за электрический потенциал аксона. Ионы буквально проскакивают из одной миелиновой оболочки в другую со скоростью, которая без миелина была бы недостижима.
Миелин играет очень важную роль в работе человеческого интеллекта [см. стр. 179]. Многие мозговые патологии связаны с потерей миелина, например рассеянный склероз. Уменьшение миелинового слоя приводит к сбоям в передаче сигналов по аксонам и, в свою очередь, к нарушению работы мозга в целом.
Серое вещество, расположенное под корой головного мозга, своим цветом обязано высокой концентрации нейронов. А белое вещество – это миелин. Аксоны, пронизывающие белое мозолистое тело [см. стр. 68], соединяющее полушария мозга, занимают гораздо больший объем, чем все вместе взятые клеточные сомы, дендриты и их шипики.
2.1.4. Синапсы
Помимо дендритов, сомы и аксонов в передаче информации от клетки к клетке задействованы очень важные образования – синапсы. Они осуществляют соединение между терминалями аксона одного нейрона (пресинаптического) и нервными окончаниями (ветками, листочками) дендрита другого нейрона (постсинаптического). Самое потрясающее в этом механизме то, что нейроны не вступают в непосредственный контакт. В самой сердцевине синапса расположено бесконечно малое пространство (размер его колеблется между 20 и 40 миллиардными метра), именуемое синаптической щелью. И именно в этом крошечном участке мозга, собственно, и вершится таинство волшебного нейронного леса: клетки, отвечающие за мышление, разговаривают между собой на химическом языке.
На концах у аксонов в крошечных пузырьках – везикулах – находятся нейротрансмиттеры. По команде, переданной электрическим импульсом, везикулы выпускают нейротрансмиттеры в синаптическую щель, и они попадают на рецепторы другого нейрона, заставляя его создать собственный сигнал. Таким образом передается и возбуждение, и торможение. И это только одно из звеньев бесконечной цепи сигналов, миллионы которых зажигаются в мозгу каждую секунду. Благодаря им человек может идти, активно двигая ногами, и одновременно вспоминать приятные сцены из прошлого или планировать сложные задачи на будущее.