Литмир - Электронная Библиотека
Содержание  
A
A

Смонтирован, чтобы думать

В XIX веке, исследуя анатомию нейронов, Сантьяго Рамон-и-Кахаль предположил, что сигнал идет по нейронам в одном направлении. Тело клетки и его ответвления (дендриты) принимают информацию от других клеток. Обработанные данные поступают по длинному нервному волокну нейрона (аксону) к синапсу, где сообщение передается следующему нейрону (см. рис. 1.1).

Только в 1940–50-х годах было составлено детализированное описание процесса передачи электрических сигналов. Сегодня мы знаем, что информация передается в виде кратких импульсов – потенциалов действия – с небольшим напряжением (всего 0,1 вольта) и длительностью в несколько тысячных секунды. Такие импульсы быстро преодолевают огромные расстояния, развивая скорость до 120 м/с.

Путь нервного импульса завершается у синапса, где происходит выброс молекул нейромедиаторов, которые передают сигнал через разрыв между нейронами. Оказавшись на другой стороне, молекулы сразу запускают электрический сигнал на поверхности принимающего нейрона. И тогда нейрон либо посылает собственный сигнал, либо временно подавляет его, снижая вероятность реакции на другие входящие сигналы. Оба варианта важны для направления потока информации, из которой в конечном счете состоят наши мысли и чувства.

Как работает ваш мозг. Внутри самого сложного объекта во Вселенной - b00000077.png

Рис. 1.1. Строение нейрона

Сложность нейронных сетей поразительна. Наш мозг содержит примерно 86 млрд нейронов, у каждого из них примерно 1000 синапсов. Если пересчитывать их по одному за секунду, не хватит и 30 млн лет.

В отличие от компонентов компьютера, наши нейронные сети гибкие благодаря особому классу нейромедиаторов – нейромодуляторов, которые по действию похожи на регуляторы громкости. Они меняют количество других нейромедиаторов в синапсе и степень реакции нейронов на входящие сигналы. Одни изменения отвечают на сиюминутные события, а другие перестраивают мозг надолго – считается, что так формируются воспоминания.

Многие нейромодуляторы действуют только на определенные нейроны, а другие способны проникать сквозь обширные участки тканей мозга и вызывать масштабные изменения. Например, оксид азота – настолько маленькая молекула (10-я из самых маленьких молекул), что легко перемещается от выбросившего ее нейрона. Она воздействует на принимающие нейроны и на количество выпускаемых ими с каждым импульсом нейромедиаторов, провоцируя изменения, необходимые для формирования памяти в гиппокампе.

Под воздействием множества химических передатчиков и модуляторов мозг постоянно меняется, позволяя нам учиться, меняться и адаптироваться к миру вокруг нас.

Как наш мозг стал таким сложным?

14 млн лет назад в Африке жила обезьянка. Она была очень умной, но мозг большинства ее потомков (орангутанов, горилл и шимпанзе), похоже, не сильно изменился по сравнению с той ветвью ее семейства, из которой вышли современные люди. Что сделало нас другими?

Мы можем только порассуждать на тему, почему около 2,5 млн лет назад наш мозг начал расти, но возможно, что дело в счастливой случайности.

У других приматов «кусающая» мышца оказывает сильное давление на весь череп и сдерживает его рост. У наших предков произошла мутация, ослабившая эту мышцу и, возможно, позволившая черепу расти. Мутация произошла примерно в то время, когда появились первые человекообразные с более слабыми челюстями и более крупными черепами и мозгом.

Вероятно, на развитие мозга оказало влияние совершенствование инструментов для охоты и разделывания животных около 2 млн лет назад, так как мясо очень богато питательными веществами. Более насыщенный рацион питания открывает возможности для дальнейшего роста мозга.

Приматолог Ричард Рэнгем из Гарвардского университета считает, что похожую роль сыграл огонь, позволивший получать из еды больше питательных веществ. Ученый предположил, что приготовленная еда постепенно привела к уменьшению нашего кишечника. Так как ткани кишечника дорого выращивать и содержать, их сокращение высвободило ценные ресурсы, что способствовало росту мозга.

Большой объем мозга может быть напрямую связан и с нашей сложной общественной жизнью. Вероятно, наши предки жили группами, как и современные приматы. Вырабатывание внутри группы светского поведения требует достаточной силы мозга. По мнению Робина Данбара из Оксфордского университета, это объясняет невероятное расширение лобных участков новой коры мозга приматов, особенно у высших обезьян. Данбар показал, что существует прочная взаимосвязь между численностью группы приматов, частотой их взаимодействия друг с другом и размером участков мозга, которые за это отвечают.

Видимо, к появлению современного человеческого мозга в Африке около 200 000 лет назад привело удачное сочетание рациона, культуры, технологий, общественных связей и генов.

Что дальше? Дело в том, что мы продолжаем развиваться. Согласно одному из последних исследований, у людей, мигрировавших из Африки в северные широты, увеличилась зрительная кора головного мозга – возможно, из-за необходимости компенсировать менее яркий свет в этих местах.

Что любопытно, не исключено, что дальнейшее увеличение нашего мозга даст нам преимущества. В нашем недавнем эволюционном прошлом мог случиться момент, когда опасность при родах детей с более крупными головами перевесила выгоды от роста мозга. А может быть, стало слишком сложно прокормить мозг. Он уже сжигает 20 % поступающей пищи, и не исключено, что мы просто не можем позволить себе выделять еще больше энергии на мыслительный процесс.

Более того, похоже, что мозг даже уменьшается. Примерно за последние 10 000 лет средний размер человеческого мозга относительно тела сократился на 3–4 %. Некоторые люди беспокоятся, не глупеет ли человечество (подробнее см. главу 3), другие выражают надежду, что улучшилось качество нейронных связей.

Карта разума

Мозг – это комок нейронов, но его ни в коем случае нельзя назвать неорганизованным. Развиваясь, любой мозг перед рождением приобретает характерную форму, которая, если отбросить детали, у всех нас примерно одинаковая. Существует множество способов структурного деления такого сложного объекта, поэтому у каждого участка мозга есть невероятное количество имен и описаний. Но проще всего выделить у мозга три области, каждая из которых отвечает за конкретный тип процессов.

Задний мозг

Как и следует из названия, задний мозг расположен у основания черепа, прямо над шеей. Сравнения различных организмов позволяют предположить, что это самая первая структура, сформировавшаяся из предшественников мозга у ранних позвоночных. У людей задний мозг состоит из трех образований: продолговатый мозг, варолиев мост и мозжечок.

Продолговатый мозг отвечает за многие виды рефлекторного поведения, которые поддерживают в нас жизнь: дыхание, регулирование сердцебиения, глотание и др. Нейроны этого участка пересекают мозг от одной стороны до другой и спускаются в спинной мозг, что объясняет, почему каждая половинка мозга контролирует противоположные части тела.

Чуть выше находится варолиев мост, связанный с такими жизненно важными функциями, как дыхание, ритм сердца, кровяное давление и сон. Он также играет значимую роль в управлении выражением лица и получении информации о передвижениях и ориентации тела в пространстве.

Как работает ваш мозг. Внутри самого сложного объекта во Вселенной - b00000115.png

Рис. 1.2. Основные области мозга: задний и средний мозг

Самая выдающаяся часть заднего мозга – это мозжечок с характерной волнистой поверхностью и глубокими бороздами. Он богато снабжается сенсорными данными о расположении и передвижениях тела и может кодировать и воспроизводить информацию, необходимую для выполнения сложных навыков и движений мелкой моторики. Недавние исследования связали его с точной настройкой наших эмоциональных и познавательных навыков.

2
{"b":"651362","o":1}