Литмир - Электронная Библиотека
A
A

Например, многие водители не знают о последних изменениях в правилах дорожного движения и поэтому часто их нарушают. Кроме того, поскольку каждая машина автономна, то, когда две машины приближаются к одному перекрестку, водители могут неверно оценить намерения друг друга, что приводит к аварии. Два беспилотных автомобиля, приближающиеся к перекрестку, не полностью автономны – они части единого алгоритма. Поэтому вероятность неверной интерпретации намерений, а значит, и столкновения у них гораздо ниже. А если министерство транспорта решит изменить какие-то пункты ПДД, все беспилотные автомобили можно одновременно и без особого труда перепрограммировать, чтобы они в точности соблюдали новые правила[13].

Сказанное справедливо и для медицины. Когда Всемирная организация здравоохранения выявляет новое заболевание или какая-нибудь лаборатория создает новое лекарство, информацию об этом практически невозможно донести сразу до всех врачей в мире. Но если мы создадим даже 10 миллиардов систем медицинского искусственного интеллекта и каждая будет следить за здоровьем какого-то одного человека, информацию в них можно обновить за доли секунды, и эти системы легко смогут обмениваться данными о новом вирусе или препарате. Эти потенциальные преимущества – взаимодействие и обновляемость – столь велики, что в некоторых профессиях имеет смысл заменить всех людей компьютерами, даже если некоторые специалисты по-прежнему справляются с работой лучше машины.

Вы можете возразить, что, заменив отдельных людей компьютерной сетью, мы лишимся преимуществ индивидуального подхода. Например, если один врач поставит неверный диагноз, он не убьет всех пациентов в мире и не остановит разработку всех новых лекарств. Но если все врачи представляют собой единую систему и эта система допустит ошибку, результат может оказаться катастрофическим. В реальности интегрированные компьютерные системы могут максимизировать преимущества взаимодействия, не растеряв преимуществ индивидуального подхода. В одной сети будут выполняться разные алгоритмы – так, чтобы пациент в отдаленной деревне в джунглях мог с помощью смартфона связаться не с одним авторитетным врачом, а с сотнями систем медицинского искусственного интеллекта, работа которых подвергается постоянному сравнению. Не устраивают рекомендации врача IBM? Не страшно. Даже если вы застряли где-то на склонах Килиманджаро, вам не составит никакого труда узнать мнение доктора из Baidu.

Польза для человеческого общества, вероятно, будет огромной. Системы медицинского искусственного интеллекта смогут обеспечить более качественным и дешевым медицинским обслуживанием миллиарды людей, включая тех, кому сегодня вообще недоступны услуги здравоохранения. Благодаря обучающим алгоритмам и биометрическим датчикам бедный деревенский житель из слаборазвитой страны сможет получить медицинские услуги, по качеству значительно превосходящие те, что сегодня богатейшие люди мира получают в самых современных клиниках[14].

Аналогичным образом беспилотные автомобили могли бы обеспечить людей лучшими транспортными услугами – в частности, снизить смертность из-за автомобильных аварий. В наши дни в авариях на дорогах ежегодно гибнет около 1,25 миллиона человек (в два раза больше, чем из-за войн, преступлений и терактов)[15]. Более 90 % этих аварий связаны с так называемым человеческим фактором: кто-то сел за руль нетрезвым, кто-то вел машину, набирая сообщение на телефоне, кто-то заснул за рулем, кто-то просто погрузился в грезы, вместо того чтобы следить за дорогой. По оценкам Национального управления безопасности движения на трассах, в 2012 году в США причиной 31 % смертельных аварий был алкоголь, 30 % – превышение скорости и 21 % – невнимательность[16]. Для беспилотных автомобилей подобное невозможно. Хотя у них есть свои проблемы и ограничения, а некоторых аварий не удастся избежать никому, замена всех водителей компьютерами, как ожидается, снизит уровень смертности и травм на дорогах приблизительно на 90 %[17]. Иными словами, переход на беспилотные автомобили, по всей видимости, каждый год будет сохранять жизни миллиону человек.

Так что было бы безумием препятствовать автоматизации в сфере транспорта и здравоохранения только ради того, чтобы сохранить людям рабочие места. Ведь по большому счету защищать нужно именно людей, а не работу. Освободившимся водителям и врачам просто придется искать себе другие занятия.

Алгоритм по имени Моцарт

Маловероятно, что искусственный интеллект и роботы полностью уничтожат целые отрасли – по крайней мере, в ближайшее время. Будет автоматизирован в основном узкий диапазон монотонных рабочих операций. Гораздо труднее заменить машинами представителей творческих профессий, в которых необходимо использовать широкий набор навыков и которые требуют умения действовать в непредсказуемых ситуациях. Вернемся к здравоохранению. Многие врачи практически полностью заняты обработкой информации: они собирают данные о здоровье, анализируют их, ставят диагноз. А вот медсестра должна обладать хорошими моторными и эмоциональными навыками, чтобы безболезненно сделать укол, сменить повязку или успокоить буйного пациента. Поэтому, скорее всего, семейный врач с искусственным интеллектом на нашем смартфоне появится на несколько десятилетий раньше, чем мы увидим надежного робота-медсестру[18]. По всей вероятности, сфера социального обслуживания – забота о больных, детях и стариках – еще долго останется в ведении человека. Люди живут все дольше, а детей у них становится меньше, и поэтому уход за пожилыми будет одним из самых быстрорастущих секторов на рынке труда для человека.

Плохо поддается автоматизации не только уход за больными и немощными, но и творческий процесс. Нам больше не нужны люди, продающие музыку: мы можем напрямую загрузить ее из iTunes, – но композиторы, музыканты, певцы и диджеи у нас по-прежнему из плоти и крови. Мы полагаемся на творческие способности людей не только в сочинении новой музыки, но и в выборе из невероятного количества доступных вариантов.

И все же автоматизации не избежит ни одна сфера – даже искусство. В современном мире искусство обычно ассоциируют с человеческими эмоциями. Мы склонны считать, что художник дает выход неким внутренним психологическим процессам, что цель искусства – помочь нам осознать свои эмоции или пробудить в нас новые чувства. Поэтому, анализируя искусство, мы пытаемся судить о нем по эмоциональному воздействию на аудиторию. Но если в основе искусства лежат чувства, что произойдет, когда внешние алгоритмы научатся понимать человеческие эмоции и манипулировать ими лучше, чем Шекспир, Фрида Кало или Бейонсе?

В конце концов, эмоции – вовсе не мистическое явление, а продукт биохимических процессов. Поэтому в недалеком будущем алгоритм машинного обучения сможет анализировать биометрические данные от датчиков внутри и на поверхности вашего тела, определять ваш тип личности, следить за сменой настроения, а затем вычислять эмоциональное воздействие, которое окажет на вас та или иная композиция – или даже музыкальная тональность[19].

Вероятно, из всех видов искусства для анализа больших данных лучше всего подходит музыка, поскольку и она сама, и результат ее воздействия поддаются точному математическому описанию. На входе – математические диаграммы звуковых волн, на выходе – электрохимические диаграммы нейронных бурь. Через несколько десятилетий алгоритм, проанализировавший миллионы мелодий, научится предсказывать, какую реакцию вызовет любая из них[20].

вернуться

13

Seyed Azimi et al., ‘Vehicular Networks for Collision Avoidance at Intersections,’ SAE International Journal of Passenger Cars – Mechanical Systems 4 (2011), 406–416; Swarun Kumar et al., ‘CarSpeak: A Content-Centric Network for Autonomous Driving’, SIGCOM Computer Communication Review 42(2012), 259–270; Mihail L. Sichitiu and Maria Kihl, ‘Inter-Vehicle Communication Systems: A Survey’, IEEE Communications Surveys & Tutorials (2008), 10; Mario Gerla, Eun-Kyu Lee and Giovanni Pau, ‘Internet of Vehicles: From Intelligent Grid to Autonomous Cars and Vehicular Clouds’, 2014 IEEE World Forum on Internet of Tings (WF-IoT) (2014), 241–246.

вернуться

14

David D. Luxton et al., ‘mHealth for Mental Health: Integrating Smartphone Technology in Behavioural Healthcare’, Professional Psychology: Research and Practice 42:6 (2011), 505–512; Abu Saleh Mohammad Mosa, Illhoi Yo o and Lincoln Sheets, ‘A Systematic Review of Healthcare Application for Smartphones’, BMC Medical Informatics and Decision Making 12:1 (2012), 67; Karl Frederick Braekkan Payne, Heather Wharrad and Kim Watts, ‘Smartphone and Medical Related App Use among Medical Students and Junior Doctors in the United Kingdom (UK): A Regional Survey’, BMC Medical Informatics and Decision Making 12:1 (2012), 121; Sandeep Kumar Vashist, E. Marion Schneider and John H. T. Loung, ‘Commercial Smartphone-Based Devices and Smart Applications for Personalised Healthcare Monitoring and Management’, Diagnostics 4:3 (2014), 104–128; Maged N. Kamel Bouls et al., ‘How Smartphones Are Changing the Face of Mobile and Participatory Healthcare: An Overview, with Example from eCAALYX’, BioMedical Engineering OnLine 10:24 (2011), https://doi.org/10.1186/1475-925X-10-24, accessed 30 July 2017; Paul J. F. White, Blake W. Podaima and Marcia R. Friesen, ‘Algorithms for Smartphone and Tablet Image Analysis for Healthcare Applications’, IEEE Access 2 (2014), 831–840.

вернуться

15

World Health Organization, Global status report on road safety 2015 (2016); ‘Estimates for 2000–2015, Cause-Specifc Mortality’, http://www.who.int/healthinfo/global_burden_disease/estimates/en/index1.html, accessed 6 September 2017.

вернуться

16

Анализ причин автомобильных аварий в США см.: Daniel J. Fagnant and Kara Kockelman, ‘Preparing a Nation for Autonomous Vehicles: Opportunities, Barriers and Policy Recommendations’, Transportation Research Part A: Policy and Practice 77 (2015), 167– 181; анализ данных по всему миру см., например: OECD/ITF, Road Safety Annual Report 2016 (Paris: OECD Publishing, 2016), http://dx.doi.org/10.1787/irtad-2016-en.

вернуться

17

Kristofer D. Kusano and Hampton C. Gabler, ‘Safety Benefts of Forward Collision Warning, Brake Assist, and Autonomous Braking Systems in Rear-End Collisions’, IEEE Transactions on Intelligent Transportation Systems 13:4 (2012), 1546–1555; James M. Anderson et al., Autonomous Vehicle Technology: A Guide for Policymakers (Santa Monica: RAND Corporation, 2014), esp. 13–15; Daniel J. Fagnant and Kara Kockelman, ‘Preparing a Nation for Autonomous Vehicles: Opportunities, Barriers and Policy Recommendations’, Transportation Research Part A: Policy and Practice 77 (2015), 167–181; Jean-Francois Bonnefon, Azim Sharif and Iyad Rahwan, ‘Autonomous Vehicles Need Experimental Ethics: Are We Ready for Utilitarian Cars?’, arXiv (2015), 1–15. О предложениях по созданию межтранспортных сетей для предотвращения аварий см.: Seyed R. Azimi et al., ‘Vehicular Networks for Collision Avoidance at Intersections’, SAE International Journal of Passenger Cars – Mechanical Systems 4:1 (2011), 406–416; Swarun Kumar et al., ‘CarSpeak: A Content-Centric Network for Autonomous Driving’, SIGCOM Computer Communication Review 42:4 (2012), 259–270; Mihail L. Sichitiu and Maria Kihl, ‘Inter-Vehicle Communication Systems: A Survey’, IEEE Communications Surveys & Tutorials 10:2 (2008); Mario Gerla et al., ‘Internet of Vehicles: From Intelligent Grid to Autonomous Cars and Vehicular Clouds’, 2014 IEEE World Forum on Internet of Tings (WF-IoT) (2014), 241–246.

вернуться

18

Michael Chui, James Manyika and Mehdi Miremadi, ‘Where Machines Could Replace Humans – and Where Tey Can’t (Yet)’, McKinsey Quarterly (2016), http://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/where-machines-could-replace-humans-and-where-they-cant-yet, accessed 1 March 2018.

вернуться

19

Wu Youyou, Michal Kosinski and David Stillwell, ‘Computer-based personality judgments are more accurate than those made by humans’, PANS, vol. 112 (2014), 1036–1038.

вернуться

20

Stuart Dredge, ‘A I and music: will we be slaves to the algorithm?’ Guardian, 6 August 2017, https://www.theguardian.com/technology/2017/aug/06/artificial-intelligence-and-will-we-be-slaves-to-the-algorithm, accessed 15 October 2017. Обзорный анализ методов см.: Jose David Fernández and Francisco Vico, ‘A I Methods in Algorithmic Composition: A Comprehensive Survey’, Journal of Artifcial Intelligence Research 48 (2013), 513–582.

8
{"b":"649347","o":1}