– в IX–XI классах – после каждого урока у слабых учащихся, а у остальных проверяются не все работы, а наиболее значимые по своей важности, но с таким расчетом, чтобы один раз в месяц учителем проверялись тетради всех учащихся.
Проверка контрольных работ учителями осуществляется в следующие сроки:
– контрольные диктанты и контрольные работы по математике в V–VIII классах проверяются и возвращаются учащимся к следующему уроку;
– контрольные работы по математике в IX–XI классах, как правило, к следующему уроку, а при большом количестве работ (более 70) – через один-два урока.
В проверяемых работах учитель отмечает допущенные ошибки, руководствуясь следующим:
– учитель только подчеркивает и отмечает на полях допущенную ошибку, которую исправляет сам ученик;
– подчеркивание ошибок производится учителем только красной пастой (красными чернилами, красным карандашом).
Все контрольные работы обязательно оцениваются учителем с занесением оценок в классный журнал.
Самостоятельные обучающие письменные работы также оцениваются. Отметки в журнал за эти работы могут быть выставлены по усмотрению учителя.
При оценке письменных работ учащихся учитель руководствуется соответствующими нормами оценки знаний, умений и навыков школьников.
После проверки письменных работ дается задание обучающимся по исправлению ошибок или выполнению заданий, предупреждающих повторение аналогичных ошибок. Работа над ошибками, как правило, осуществляется в тех же тетрадях, в которых выполнялись соответствующие письменные работы.
Изучение каждой темы заканчивается подведением итогов и выявлением уровня ее усвоения. Подведение итогов может происходить в виде письменной контрольной работы или в виде зачета по данной теме (зачет может быть комбинированным). Минимально возможное количество контрольных работ (зачетов) должно быть не меньше, чем учебных тем. Если на изучение темы отводится большое количество часов (например, тема «Производная» в XI классе), то проводится не менее двух контрольных работ.
4. Оценка письменных работ учащихся по математике
Отметка «5» ставится, если:
– работа выполнена верно и полностью;
– в логических рассуждениях и обосновании решения нет пробелов и ошибок;
– решение не содержит неверных математических утверждений (возможна одна неточность, описка, не являющаяся следствием незнания или непонимания учебного материала).
Отметка «4» ставится, если:
– работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);
– допущена одна ошибка или два-три недочета в выкладках, рисунках, чертежах или графиках (если эти виды работы не являлись специальным объектом проверки);
– выполнено без недочетов не менее трех четвертых заданий.
Отметка «3» ставится, если допущены более одной ошибки или более трех недочетов в выкладках, чертежах или графиках, но учащийся владеет обязательными умениями по проверяемой теме; без недочетов выполнено не менее половины работы.
Отметка «2» ставится, если:
– допущены существенные ошибки, показавшие, что учащийся не владеет обязательными умениями по данной теме в полной мере;
– правильно выполнено менее половины работы.
Отметка «1» ставится, если работа показала полное отсутствие у учащегося обязательных знаний и умений по проверяемой теме или значительная часть работы выполнена не самостоятельно.
Особенности оценки в контексте ФГОС
Оценка предметных результатов может быть описана как оценка планируемых результатов по отдельному предмету (математике, алгебре, геометрии).
Оценка предметных результатов предусматривает выявление уровня достижения обучающимися планируемых результатов по математике с учетом:
1) владения предметными понятиями и способами действия;
2) умения применять знания в новых условиях;
3) системности знаний.
Следует иметь в виду, что должна оцениваться не только способность учащегося воспроизводить конкретные знания и умения в стандартных ситуациях (знание алгоритмов решения тех или иных задач), но и умение использовать эти знания при решении учебно-познавательных и учебно-практических задач, построенных на предметном материале с использованием метапредметных действий:
1) приводить необходимые пояснения;
2) выстраивать цепочку логических обоснований;
3) сопоставлять, анализировать, делать вывод, подчас в нестандартной ситуации;
4) критически осмысливать полученный результат;
5) точно и полно отвечать на поставленный вопрос.
Подробнее метапредметные умения представлены на схеме на с. 33.
При этом приоритетными в диагностике предметных результатов становятся не репродуктивные, а продуктивные задания (задачи) по применению знаний и умений, предполагающих создание учащимся в ходе решения информационного продукта: вывода, оценки, модели и т. п.
Накопительная система оценки образовательных достижений
Одним из средств накопления информации об образовательных результатах учащегося является портфолио (портфель достижений).
Портфолио представляет собой специально организованную подборку работ, которые демонстрируют усилия, прогресс и достижения обучающегося в различных областях. Результатами, влияющими на конечную итоговую оценку и зафиксированными в портфолио ученика, могут быть грамоты, дипломы, сертификаты, подтверждающие участие и достижения обучающегося во внеурочной деятельности:
1) участие в конкурсах, выставках различного уровня;
2) победа в конкурсах, выставках, соревнованиях;
3) участие в научно-практических конференциях;
4) авторские публикации в изданиях выше школьного уровня;
5) авторские проекты, изобретения;
6) получение грантов, стипендий, премий, гражданских наград;
7) лидирование в общепризнанных рейтингах.
Схема
Метапредметные универсальные учебные действия
Портфолио включает материалы, подтверждающие достижения учащегося в учебной деятельности:
1) подборку ученических работ, которая демонстрирует нарастающие успешность, объем и глубину знаний;
2) систематизированные результаты текущей оценки – отдельные листы наблюдений, оценочные листы и результаты тематического тестирования; выборочные материалы самоанализа и самооценки учащихся;
3) результаты итогового тестирования;
4) результаты выполнения итоговых, комплексных работ.
Все перечисленные средства, формы и методы должны обеспечить комплексную оценку результатов обучения школьника – его личностные, метапредметные и предметные результаты.
Таблица 1
Процедура и инструментарий оценки образовательных достижений учащихся
Как проверять знания и сформированность УУД по математике
Любая новая система оценивания, даже если она будет идеальна с точки зрения педагогической теории и педагогических измерений, может оказаться неэффективной, если не будет учитывать исторический контекст, в котором формировалась и развивалась система контроля и оценки. Разрабатываемая система оценивания должна учитывать состояние проблем в современном образовании, в том числе проблему, связанную с оценкой качества образования. Поэтому одно из главных требований при создании общероссийской и региональной систем оценки качества образования (ОСОКО, РСОКО) состоит в том, чтобы знать и учитывать существующие исторические традиции и опыт в области контроля и оценки в образовании. Любые новые разработки в этой области должны органично вписываться в систему связей и отношений, существующих в области педагогических измерений, контроля и оценки качества образования, и согласовываться с предшествующим опытом.