Рис. 1.1. Свет отклоняется искривленным пространством-временем
Экспедиция, возглавляемая Эддингтоном, прибыла на Принсипи и своевременно произвела фотосъемку затмения. Они хотели наблюдать Гиады – яркое звездное скопление – во время прохождения Солнца перед ним. Чтобы заслонить солнечный свет, Эддингтону требовалось полное солнечное затмение. Если теория Эйнштейна верна, то положения звезд скопления Гиады окажутся сдвинутыми примерно на 1/2000 градуса.
Первый снимок Гиад Эддингтон сделал ночью в Оксфорде. Затем, 29 мая 1919 года, он сфотографировал Гиады на острове Принсипи во время солнечного затмения, когда скопление звезд находилось практически за Солнцем. Потребовалось много времени, чтобы обнаружить это отклонение света – смещение в положении звезд было очень маленьким. Но в сентябре 1919 года Эддингтон, в конце концов, заявил, что Эйнштейн был прав. Сравнив два измерения, Эддингтон обнаружил, что смещение оказалось в точности таким, каким его предсказывал Эйнштейн. Полученный результат сделал Эйнштейна международной знаменитостью.
Таким образом, Эйнштейну опять повезло. Достоверность результатов, полученных Эддингтоном, сегодня вызывает некоторые сомнения. Высказываются предположения, что эффект отклонения света на самом деле был слишком мал, и Эддингтон вряд ли мог его зафиксировать с большой точностью. И не будь он так увлечен теорией Эйнштейна, он вряд ли бы пришел к такому однозначному заключению так быстро.
С тех пор теория Эйнштейна не раз подвергалась многочисленным проверкам. Одно из предсказаний теории заключается в том, что луч света, выбираясь из искривленного пространства-времени возле массивного объекта, меняет свою длину волны, которая растягивается, т. е. свет «краснеет». В 1959 году американские физики Роберт Паунд (1919–2010) и Глен Ребка (1931–2015) измерили гравитационное красное смещение в своей лаборатории в Гарварде. Мы имеем достаточно много доказательств существования черных дыр (см. главу 3). А в 2016 году физикам из гравитационно-волновой обсерватории LIGO удалось обнаружить гравитационные волны (см. главу 4), перемещение искажений пространства-времени, которые Эйнштейн предсказал сто лет тому назад.
Был ли уникален мозг Эйнштейна?
Когда Эйнштейн умер, патологоанатом, горя желанием открыть источник необычайного интеллекта Эйнштейна, извлек его мозг, анатомировал и сфотографировал его. Мозг ученого с самого начала вызвал некоторое разочарование: он был слегка меньше средних размеров. Однако за последние десятилетия изображения мозга Эйнштейна дали исследователям пищу для новых идей. Исследование 1999 года показало, что теменная доля головного мозга Эйнштейна – часть мозга, ответственная за математическое и пространственное мышление – оказалась на 15 % шире, чем у среднего мозга. Национальным музеем здоровья и медицины в Чикаго даже было разработано специальное приложение Einstein Brain Atlas (Атлас мозга Эйнштейна). В приложении представлены более 350 оцифрованных слайдов, которые помогут исследователям «углубиться» в серое вещество великого человека. Согласно статье, опубликованной в 2012 году в неврологическом журнале Brain, блестящий интеллект Эйнштейна может объясняться особенностями префронтальной коры его мозга, которая ответственна за речь, формирование представлений о будущих событиях и предугадывание их последствий. По сравнению с обычным мозгом, префронтальная кора мозга Эйнштейна значительно увеличена. Исследователи также заметили большой выступ на двигательной коре головного мозга, посчитав его следствием того, что Эйнштейн с детства начал играть на скрипке.
Некоторые срезы мозга пропали без вести. Не исключено, что когда-нибудь они найдутся на чердаках ваших дедушек.
Пространственно-временная хроника
1905
Эйнштейн излагает свою специальную теорию относительности в статье «Об электродинамике движущихся тел».
1915
Эйнштейн представляет в Прусской академии наук в Берлине свои уравнения гравитационного поля в общей теории относительности.
1916
Эйнштейн использует общую теорию относительности для предсказания существования гравитационных волн, складок в пространстве-времени, возникающих в результате ускорения массивных тел.
1917
Эйнштейн вводит дополнительный член в свои уравнения, космологическую постоянную, чтобы уравновесить силы притяжения и получить статичную Вселенную, которая бы не расширялась и не сжималась.
1919
Артур Эддингтон наблюдает отклонения световых лучей под действием притяжения Солнца во время солнечного затмения на острове Принсипи – эффект гравитационной линзы, предсказанный Эйнштейном.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.