Литмир - Электронная Библиотека
Содержание  
A
A

Почему относительное содержание углерода на Земле в тысячи раз меньше, чем на Солнце? И почему углерода больше в поясе астероидов, чем на Земле? Потому что атомы углерода, будучи в основном нейтральными, проскочили «прутья» магнитного поля протосолнечного диска и улетели к окраинам будущей Солнечной системы. (Па Солнце углерода много, потому что состав Солнца – это средний состав протосолнечного газопылевого сгущения.)

В поясе астероидов также много ртути, серы, золота, серебра, платины – у всех этих элементов высокий потенциал ионизации, их трудно ионизировать и, соответственно, удержать магнитным полем вблизи центрального светила...

А вот цезия, урана, калия, рубидия, напротив, больше на Земле, чем в астероидах. Потому что у этих элементов низкий потенциал ионизации...

Поэлементный состав Луны и Земли одинаков, потому что они находятся на одном расстоянии от Солнца...

Зная состав протосолнечного диска (по составу сегодняшнего Солнца), зная потенциалы ионизации, Ларин взял и выписал на бумажке состав изначальной Земли. И его список вошел в противоречие с основной догмой геологии о железном ядре. Для планеты с железным ядром и силикатно-шлаковой оболочкой нужно, чтобы в составе прото-Земли было 30 % кислорода и 40 % железа. Однако магнитная сепарация ограничила среднюю концентрацию кислорода в Земле в пределах 1—2 %, а железа – примерно 12 весовых процентов (кстати, именно такая концентрация железа действительно наблюдается в глубинных мантийных породах). Исходная же концентрация водорода составляла 60 атомных (а не весовых) процентов. Это много. Водород поэтому оказался везде – при формировании планеты все остальные элементы были в виде водородных соединений (гидридов).

Отсюда вытекает, что силикатно-оксидная оболочка планеты под континентами имеет толщину 250—300 км, под океанами же несколько тоньше. Ниже, до самого ядра идет мантия, сложенная из бескислородных металлогидридов – кремния, магния и железа с добавками кальция, алюминия, натрия... Ну а ядро сохранило исходный состав протопланетного облака.

Теория металлогидридной планеты была проверена в лабораторных условиях – Ларин изучал свойства разных гидридов в условиях разных давлений и температур. Выяснились любопытные вещи. Скажем, теория Ларина предсказывала, что во внешней зоне ядра водород присутствует в виде раствора. Так вот, различные методы геофизики показывают, что внешние оболочки ядра действительно находятся в жидком состоянии. Раньше предполагалось, что это следствие высоких температур, царящих внутри планеты. Но тогда не совсем ясно, почему само ядро не жидкое при таких температурах, а жидкими являются только внешние его слои. Ларинская теория отвечает на этот вопрос так: «Жидкое состояние внешней зоны ядра обусловлено присутствием в металлах водорода в растворенном виде. Это явление обнаружено экспериментально. Металлы, содержащие растворенный водород, при увеличении давления сначала становятся пластичными, как пластилин, а затем начинают течь, как будто они расплавлены. Причем происходит это при комнатной температуре».

...Срединные океанские хребты активно «газят» водородом. Традиционная теория этого объяснить не может. Только ларинская.

...Геофизики обнаружили три скачка в плотности мантии на глубинах 400, 670 и 1050 км. Эти ступени можно объяснить опять-таки только ларинской теорией. Здесь, по Ларину, должен быть кремний. А гидридный кремний как раз имеет три скачка плотности при соответствующих данным глубинам давлениях (проверено в лаборатории).

...Года три-четыре назад по СМИ проскочила сенсация – на Марсе обнаружено очень много серы, гораздо больше, чем на Земле. Откуда? Непонятно. А из ларинской теории это прямо и естественно вытекает.

– Или вот взять, скажем, траппы, – рассказывал мне Ларин. – Это базальты, которые заливают обширные территории. У нас вся Восточная Сибирь залита траппами. Когда я рассматривал происхождение траппов в рамках своей теории, то пришел к выводу, что в траппах должны быть включения самородных металлов, таких, как алюминий, магний, железо... Традиционная геология этого предсказать и объяснить не может. Помню, едем мы куда-то с приятелем-геологом на машине и я его спрашиваю: «Ты не знаешь, кто у нас траппами вплотную занимается, у меня получается, что там должны встречаться самородные металлы». Друг отвечает: не знаю, но сейчас подхватим по пути парня из Якутска, он, кажется, занимается траппами. Садится в машину парень и сразу после «здравствуй» говорит моему приятелю: «У нас какая-то непонятка – мы в траппах самородные металлы обнаружили. Не знаешь, отчего бы это? Нас за это все бьют, это против теории, а у нас факты. Хоть обратно зарывай!»

...Опять-таки в полном соответствии с ларинской теорией в Исландии водород в некоторых местах из-под земли просто со свистом вырывается. Оставляя традиционную геологию в полнейшем недоумении по поводу этого необычного явления.

Водородная эра

Вот теперь, читатель, настал наконец черед рассказать, что же замечательного для всех нас в этой ларинской идее. А замечательно то, что, если полить воду на магний, в результате реакции получится оксид магния, много дармового тепла и... газообразный водород. А внутри Земли, по Ларину, полным-полно магния.

У вас, наверное, уже возник вопрос – а глубоко ли залегают в Земле эти самые металлогидриды? К сожалению, глубоко – сотни километров. (Напомню, самая глубокая скважина, пробуренная человечеством, – 15 километров.) Но! В так называемых зонах рифтогенеза, где земная кора тоньше, кремниево-магниево-железистые слои подходят довольно близко к поверхности планеты – километров на 30—40. Уже лучше, но тоже слишком глубоко для добычи... Наконец, в этих зонах рифтогенеза есть места, в которых металлы отдельными языками дотягиваются почти до самой поверхности и залегают на глубинах всего 4—6 км. Туда можно пробуриться, сделав несколько скважин – по одной скважине подавать воду, из других качать водород. Можно даже не бурить, а сделать шурф – прорыть наклонный туннель. Самое главное, для этого не нужна техника завтрашнего дня, достаточно вчерашнего.

Сразу скажу: таких удачных зон на Земле немного. И большая часть из них находится, к сожалению, в океане. Тем не менее существует несколько считанных мест и на суше. Это и есть будущие Кувейты. Будущие мировые источники главного сырья завтрашнего дня – водорода. Чувствую звенящий вопрос читателя – где?! Где они? Кто эти счастливцы? И есть ли среди них Россия?

Есть! В Байкальской области рифтогенеза, в Тункинской впадине на глубине 5—6 км электромагнитное зондирование выявило огромную зону с аномально высокой проводимостью. Опять-таки, традиционная геология сей феномен объяснить не может – только ларинская...

Кстати, об Исландии, которую мы тут уже дважды упоминали. Быть ей все-таки водородным Кувейтом! Одна из зон близкого залегания ларинских слоев именно там. Еще одна зона – в Израиле (на зависть арабам). И еще одна – на западе Канады и в США, штат Невада...

Когда ныне покойный академик Ю. Руденко ознакомился с теорией Ларина, он безмерно удивился, что она еще не является общепринятой. Потому как базируется на эмпирических космологических данных, истолковать которые иначе, чем это сделал Ларин, нельзя. В противном случае, не дали бы коллеги-геологи Ларину защитить докторскую, накидали бы черных шаров: не любят в науке убийц священных коров. Но тут крыть было просто нечем.

Любопытно, что советская власть чуть не подошла к использованию водородной энергетики первой в мире. В октябре 1989 года академическое совещание в Геологическом институте, заслушав доклад Ларина, постановило: «Рекомендовать сверхглубокое бурение (до 10—12 км) в области современного рифтогенеза... Предложить в качестве объекта Тункинскую впадину, где бурение может иметь исключительно большое значение для энергетики и экологии, так как позволит оценить и проверить научно обоснованную возможность обнаружения принципиально нового и экологически чистого энергоресурса, могущего составить конкуренцию традиционным энергетическим источникам...» Однако бурно расцветшая перестройка, а затем крушение империи помешали этому начинанию. А жаль – в Сибирском отделении АН СССР даже успели сделать предварительную технико-экономическую оценку проекта. Получалось, что с 10 квадратных километров можно будет легко получать 100—200 миллионов тонн условного топлива в год. И гнать его трубопроводами за границу. В Европу, Азию...

28
{"b":"64130","o":1}