Литмир - Электронная Библиотека
A
A

Лоцман призывает нас более внимательно посмотреть на детектор, который принимает свет после того, как он прошел сквозь щели, создавая темные и светлые интерференционные полосы. В нашем эксперименте детектор «полагается» на «фотоэлектрический эффект». Другими словами, детектор устроен таким образом, что когда свет «ударяет» по детектору, он испускает электроны, создающие электрический ток. Объяснение такого поведения лежит на побережье земли Атома, но теперь мы видим, что если увеличить электрическое напряжение детектора, мы можем породить ток и обнаружить рождающиеся электроны. Таким образом мы узнаем, когда свет попадает на детектор, и, следовательно, где будут яркие полосы, а где – темные.

Волны несут энергию, перемещаясь в пространстве. Эта энергия заставляет чайку двигаться, и именно эта энергия волн порождает электроны в нашем детекторе. С помощью волн можно увеличивать энергию двумя способами: вы можете увеличить амплитуду волны, что заставит чайку выше подпрыгивать; или же вы можете увеличить частоту волны, и тогда чайка начнет подпрыгивать вверх-вниз быстрее. Точно так же происходит и со светом; Мощность лазера может быть увеличена путем как усиления его яркости, интенсивности, так и увеличения его частоты. Частота света соответствует его цвету, поэтому увеличение частоты может означать, к примеру, переход от красного света к синему.

В нашем эксперименте, однако, эти два различных способа увеличения энергии совсем по-разному воздействуют на световой детектор[5]. Можно было бы ожидать, что при увеличении количества света на фотоэлектрическом материале детектора соответствующий электрический ток также увеличится. Это так, но только при некоторых условиях, а в общем случае работает не всегда. К примеру, пусть используемый нами свет – синий. Это означает, что его длина волны составляет 475 нанометров (1 нм = 109 м)[6], что соответствует частоте 650 терагерц[7] (1 ТГц = 1012 Гц), или 650 тысячам миллиардов колебаний в секунду. Световой детектор регистрирует излучение, в результате чего появляется уже известная нам интерференционная картина, состоящая из ярких и темных полос, наглядно демонстрирующая волновую природу света. Если увеличить мощность синего лазера, то интенсивность излучения, получаемого детектором, тоже возрастет. Одним словом, пока все складывается отлично.

Однако давайте теперь настроим частоту лазера. Будем уменьшать ее, сделав свет сначала зеленым, потом красным. Для нашего конкретного детектора при уменьшении частоты (до становления волны красной) электрический ток в какой-то момент внезапно пропадет, и мы станем лишены возможности регистрировать излучение. Уменьшая частоту, мы уменьшаем мощность лазера. Если рассматривать этот процесс в контексте знакомых нам волн в заливе, то чайка стала бы подпрыгивать реже. Следовательно, нет ничего удивительного в том, что ток будет меньше, хотя все-таки странно, что он исчезает так внезапно.

Но ничего, мы же можем компенсировать уменьшение частоты увеличением интенсивности (это соответствует тому, что чайка подпрыгивала бы выше, даже если бы она подпрыгивала реже). Однако результат нас разочаровывает, потому что при увеличении интенсивности ничего не происходит.

После того как частота света падает ниже определенного значения (это значение зависит от имеющегося у нас детектора и материала, из которого он сделан), электрического тока нет независимо от того, насколько сильно мы будем повышать интенсивность света. Это невозможно объяснить, если мы рассматриваем свет как непрерывные волны. Энергия есть – так почему же она не высвобождает электроны?

Такой результат можно объяснить, только если свет приходит не в виде непрерывной волны, а небольшими порциями – квантами – энергии (что больше похоже на отправляемые нашим экипажем письма домой, а не на радиоволны, которыми пользуются в экстренных ситуациях). Световые «порции» называются фотонами

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

вернуться

5

Это различие стимулировало развитие квантовой механики и вдохновило Альберта Эйнштейна на прорывной результат: ученый реанимировал идею света как частицы.

вернуться

6

Обычно указывают не одно значение, а диапазон: для синего цвета – 440–485 нм. – Прим. перев.

вернуться

7

Более точно, 632 ТГц. – Прим. перев.

5
{"b":"630585","o":1}