В ультрафиолете изучались почти все атмосферы планет, даже те, которых практически нет. Мощный ультрафиолетовый спектрометр зонда MAVEN позволил увидеть окружающие Марс водород и кислород на значительном удалении от поверхности. С его помощью даже сейчас можно наблюдать, как продолжается улетучивание газов из атмосферы Марса, и чем легче газ, тем интенсивнее этот процесс.
Водород и кислород в атмосфере Марса получаются путем фотохимической диссоциации (разделения) молекул воды на составляющие под действием солнечного излучения, а вода на Марсе испаряется из грунта. В результате MAVEN позволил ответить на вопрос «почему сейчас Марс сухой, хотя когда-то там были океан, озера и реки?»
Зонд Mariner-10, пролетая мимо Венеры на пути к Меркурию, в ультрафиолете смог выявить подробности венерианских облаков, увидеть V-образную структуру турбулентных потоков и определить скорость ветров.
Существует и более сложный способ исследования атмосферы – на просвет. Для этого исследуемый объект размещается между источником света и спектрометром космического аппарата. Так можно определить состав атмосферы, оценив разницу спектра источника света до и после перекрытия атмосферой. Таким образом, удается определить не только содержание газов в атмосфере, но и примерный состав и размер частиц пыли, если она тоже поглощает или рассеивает часть света.
Стоит отметить, что по части спектроскопических межпланетных исследований Россия занимает не последнее место. При участии Института космических исследований РАН создавался европейский инфракрасный спектрометр OMEGA для станции Mars Express; на том же аппарате стоит результат совместной работы российских, бельгийских и французских ученых – инфракрасный и ультрафиолетовый спектрометр SPICAM; совместно с итальянцами специалисты ИКИ РАН разработали прибор PFS. Схожий набор приборов был установлен на аппарате Venus Express, который закончил свою миссию в конце 2014 года. Сегодня у Марса работает тяжелый зонд ExoMars Trace Gas Orbiter Европейского космического агентства, на котором находятся несколько российских спектрометров для изучения атмосферы и поверхности «Красной планеты».
Свет обеспечивает нас значительным объемом информации о Солнечной системе – нужно только уметь смотреть и видеть, но есть и другие средства, связанные уже с ядерной и радиофизикой.
1.4. Как изучают планеты с помощью радио и радиации
Космическая радиация – это потоки фотонов и других элементарных частиц с очень высокой энергией, которыми наполнено все межзвездное и межпланетное пространство. Это результат излучения звезд, выбросов газопылевых дисков вокруг черных дыр, нейтронных звезд и пульсаров, взрывов сверхновых. Космической радиацией называют гамма-лучи и элементарные частицы: протоны (ядра атомов водорода), нейтроны, альфа- и бета-лучи, рентген, тяжелые заряженные частицы. Практически любой катаклизм во Вселенной является источником космической радиации. Она является проблемой для космонавтов и электроники, но для ученых радиация – подарок, позволяющий узнать много подробностей о космосе.
Гамма-спектроскопия
Гамма-лучи – это высокоэнергичные фотоны, их источником является Солнце и далекие взрывные события в галактике и за ее пределами, но гамма-спектроскопия в планетологии изучает не те лучи, которые выбрасываются из звезд и черных дыр, а те, которыми «фонят» планеты и другие безатмосферные или слабоатмосферные космические тела.
Планеты и астероиды начинают излучать в гамма-диапазоне под воздействием бомбардировки более массивных частиц: высокоэнергетичных протонов, альфа-,бета- лучей и нейтронов. В результате взаимодействия заряженных частиц с грунтом на поверхности небесных тел образуются гамма-лучи. И, как мы помним, каждый химический элемент излучает в своем спектральном диапазоне. То есть нам достаточно провести гамма-спектрометром над поверхностью, чтобы понять из чего она состоит. Но так мы получим только ее химический состав, а вот если к нему добавить информацию, например с инфракрасных спектрометров и с камер видимого диапазона, то можно получить более наглядную картину, включающую геологический состав поверхности.
Так, с помощью гамма-спектрометрии ученые узнали об относительно высоких концентрациях ториевых, железных и титановых руд на Луне. Радиоактивные породы тоже хорошо искать этим методом. С помощью гамма-спектрометра на аппарате Mars Odyssey удалось обнаружить на Марсе два района с аномально высоким содержанием ториевых и, вероятно, урановых руд. Вполне возможно, что там когда-то происходили процессы (как на Земле, в Африке) с образованием естественного атомного реактора. Это обнадеживающая находка означает, что атомные электростанции будущих марсианских поселенцев могут работать на местном сырье.
Нейтронные детекторы
Космические частицы, врезающиеся в грунт безатмосферных тел, выбивают не только фотоны, но и более крупные элементарные частицы, в том числе нейтроны. Выбитые нейтроны движутся через грунт с высокой скоростью и при столкновениях с каждым атомом водорода теряют много энергии. Соответственно, измеряя энергию вылетающих с поверхности нейтронов можно определить, находится ли под ней водород.
Водород – очень летучий газ, который не задерживается в грунте в свободной форме, особенно там, где атмосферное давление стремится к нулю. Чтобы сохранить водород в грунте, его нужно связать на химическом уровне, и лучшим средством для этого остается вода. Таким образом, пролетая над поверхностью и собирая данные о скоростях вылетающих нейтронов, можно определить примерное содержание воды в грунте. Разумеется, чем ниже мы пролетим, тем точнее будут данные.
Нейтронные спектрометры на орбитальных аппаратах пока дают погрешность в сотню километров. Если использовать специальный ограничитель, называемый «коллиматор», то можно повысить точность до десятков километров. Еще для этого метода ограничена глубина зондирования. Все нейтроны вылетают с глубины не ниже 1 метра, поэтому о запасах воды в более глубоких слоях остается только догадываться и полагаться на другие методы исследования.
С помощью российских нейтронных детекторов LEND и HEND, были получены данные о распределении водорода/воды в приповерхностных слоях Луны и Марса. И если марсианские данные уже дважды подтвердились, то лунные еще ждут своей проверки.
На Марсе в приполярный регион высадился посадочный модуль Phoenix, и там, где HEND прогнозировал до 70 % воды в грунте, прямо под пылью нашелся пласт водяного льда. В кратере Гейла, где работает марсоход Curiosity, HEND обещал 5 %, а по данным марсохода содержание воды в грунте колеблется от 3 % до 5 %, и лишь изредка попадаются «оазисы» аж в 6 %.