s(t) = t³
Приращение и производная:
s(t) = t³
∆s = s(t+∆t) – s(t) = t³ + 3 t²∆t+ 3t∆ t² + ∆ t³ – t³ = ∆t(3 t² + 3t∆t + ∆t²)
Из двух последних примеров (с производными функций s(t) = t² и s(t) = t³) следует, что показатель степени числа, становится его произведением, а степень уменьшается на единицу:
s(t) = tⁿ
А чему равна производная от аргумента функции? Давайте узнаем…
s(t) = t
Приращение:
∆s = s(t+∆t) – s(t) = t + ∆t – t = ∆t
Производная:
Получается, что производная от переменной:
t′ = 0
Правила дифференцирования и дифференцирование сложных функций
Дифференцирование суммы
(u+v)′ = u′ + v′, где u и v – функции.
Пусть f(x) = u(x) + v(x). Тогда:
∆f = f(x+∆x) – f(x) = u(x+∆x) + v(x+∆x) – u(x) – v(x) = u(x) + ∆u + v(x) + ∆v – u(x) – v(x) = ∆u + ∆v
Тогда имеем:
Дроби ∆u/∆х и ∆v/∆х при ∆х->0 стремятся соответственно к u′(x) и v′ (x). Сумма этих дробей стремится к сумме u′(x) + v′ (x).
f′(x) = u′ (x) + v′ (x)
Дифференцирование произведения
(u*v)′ = u′ v + v′u, где u и v – функции
Разберем, почему это так. Обозначим f(x) = u(x) * v(x). Тогда:
∆f = f(x+∆x) – f(x) = u(x+∆x) * v(x+∆x) – u(x) * v(x) = (u(x) + ∆u) * (v(x) + ∆v) – u(x) * v(x) = u(x)v(x) + v(x)∆u + u(x)∆v + ∆u∆v – u(x)v(x) = v(x)∆u + u(x)∆v + ∆u∆v
Далее имеем:
Первое слагаемое стремиться к u′(x) v(x). Второе слагаемое стремиться к v′(x)* u(x). А третье, в дроби ∆u/∆x, в пределе даст число u′(x), а поскольку множитель ∆v стремиться к нулю, то и вся эта дробь обратится в ноль. А следовательно, в результате получаем:
f′(x) = u′ (x) v(x) + v′ (x) u(x)
Из этого правила, легко убедиться, что:
(c*u)′ = c′ u + c u′ = c u′
Поскольку, с – константа, поэтому ее производная равна нулю (c′ = 0).
Зная это правило мы без труда, найдем изменение скорости второго примера.
Применим к выражению правило дифференцирование суммы:
s′ (t) = (0,2t) ′ + (1,5) ′
Теперь по порядку, возьмём выражение – (0,2t) ′. Как брать производную произведения константы и переменной мы знаем:
(0,2t) ′ = 0,2
А производная самой константы равна нулю – (1,5) ′ = 0.
Следовательно, скорость изменения скорости, второго примера:
s′ (t) = 0,2
Что совпадает с нашим ответом, полученном ранее во втором примере.
Дифференцирование сложной функции
Допустим, что в некоторой функции, y сама является функцией:
f = y²
y = x²+x
Представим дифференцирование этой функции в виде:
Нахождение производной в этом случае, осуществляется в два этапа.
Мы знаем, как решить производную типа: dy²/dy = 2y
А также знаем, как решать производную суммы: х² + х = (х²)′ + х′ = 2х+1
Тогда:
2(x²+x) * (2х+1) = (2х²+2х) * (2х+1) = 4х³+6х²+2х
Я надеюсь, вам удалось понять, в чем состоит суть дифференциального исчисления.
Используя описанные, методы дифференцирования выражений, вы сможете понять механизм работы метода градиентного спуска.
В качестве небольшого дополнения, приведу список наиболее распространённых табличных производных:
Зачем нам дифференцировать функции
Еще раз вспомним как мы спускаемся по склону. Что в кромешной тьме, мы хотим попасть к его подножью, имея в своем арсенале слабенький фонарик.
Опишем эту ситуацию, по аналогии с математическим языком. Для этого проиллюстрируем график метода градиентного спуска, но на этот раз применительно к более сложной функции, зависящей от двух параметров. График такой функции можно представить в трех измерениях, где высота представляет значение функции: