Литмир - Электронная Библиотека
Содержание  
A
A

В гиппокампе преобладают нейроны новизны, а посему на все сигналы он реагирует одинаково: идут одни и те же сигналы – реакция мало-помалу угасает, чуть-чуть меняется сигнал – возникает вновь. Это естественно, парадоксально другое: при появлении нового сигнала большинство нейронов замолкает и не дает никаких разрядов. Умолкание и есть их реакция, а обычная «фоновая» активность – ее отсутствие. Как объяснить этот парадокс и не кроется ли в нем ключ к пониманию роли гиппокамиа? Виноградова решает посмотреть, чем занимаются во время молчания гиппокампа его соседи. Оказывается, в это время просыпаются нейроны ретикулярной формации и посылают свои импульсы в кору. Идет ориентировочная реакция, мозг изучает новый сигнал. Сигнал изучен, начинается консолидация следов, и гиппокамп оживает: его нейроны затормаживают работу ретикулярной формации, гасят ее. Выходит, гиппокамп регулирует ее активность, он решает, что стоит запоминать, а чего не стоит. Он – аппарат оценки сигналов, сравнивающее устройство. По схеме Виноградовой, сравнение происходит так. На вытянутые в цепочку нейроны гиппокампа поступают с двух сторон два потока импульсов – один несет информацию о новом сигнале, другой об эталонах. Сигналы встречаются, гиппокамп их сравнивает: если разницы нет, гиппокамп продолжает тормозить ретикулярную формацию своей активностью, если разница есть – умолкает, и ретикулярная формация активизирует запоминающие механизмы. Содержание сигнала его не интересует, только разница. В записях, отражающих его активность, нет и намека на структуру сигнала; такой намек можно увидеть у нейронов-специалистов, преобладающих в сенсорных зонах, и у нейронов маммилярных тел. Не эти ли тела ведают консолидацией, посылая по нейронным кругам такие импульсы, в которых кодируется рисунок следа? Все возможно. К сожалению, ничего больше о гиппокампе разузнать пока не удалось и о маммилярных телах тоже. И откуда приходит к нему информация о важности сигнала, тоже неясно. Завеса таинственности, окутывавшая гиппокамп, только начинает приоткрываться, но главное уже сомнению не подлежит: это важнейший механизм памяти, от которого воспроизведение следов зависит в первую голову. Остается узнать, наконец, что же представляют собой сами следы.

МЕТАМОРФОЗЫ МУЧНЫХ ХРУЩАКОВ

Как вы помните, уже в XIX веке психологи и физиологи были убеждены, что следы памяти связаны с изменениями в молекулах мозгового вещества. Однако идея, высказанная в столь общей форме, немногим отличалась от идеи восковой дощечки и за неимением более точных данных подробно не обсуждалась. Открыв и исследовав нейрон, физиология увлеклась им надолго; этому увлечению способствовало сходство в поведении нейронов и элементов вычислительных машин, на которое настойчиво указывали первые кибернетики. Мак-Каллох и Питтс разработали абстрактную модель нейрона, рассматривая его как автомат, имеющий конечное число дискретных (прерывистых) внутренних состояний. У нейрона получилось два возможных состояния – возбужденное и невозбужденное. Объединив нейроны в сеть, Мак-Каллох и Питтс получили первую модель нервной системы. Вслед за этим наступила эпоха дискуссий о том, является ли мозг машиной или не является, можно ли построить машину, которая мыслила бы, как мозг, могут ли машины мыслить и т. д. и т. п. Несмотря на замечание Джона фон Неймана насчет того, что элементы машин действуют последовательно, а элементы мозга параллельно, дискуссия длилась едва ли не четверть века. Тем временем ученые, не принимавшие участия в дискуссии, обнаружили, что с нейронной активностью связаны лишь процессы кратковременной памяти, а долговременная, сравнительно безразлично относившаяся к электрошоку, должна иметь иную природу. Какую же? Взоры исследователей обратились к молекулам, о которых к тому времени было уже известно гораздо больше, чем в конце XIX века.

В том же 1943 г., когда Мак-Каллох и Питтс выпустили из кувшина демона моделирования, чья тень все еще будоражит умы, шведский гистохимик Холдер Хиден обнаружил, что во время возбуждения нервной системы в нейронах усиливается синтез нуклеиновых кислот и белков. В самом этом факте не было ничего удивительного, Будь жив Геринг, он сказал бы, что то же самое происходит и в упражняющейся мышце. Но Хиден уже не мог удовлетвориться таким объяснением. На его глазах молекулярная биология двигалась к расшифровке кода наследственности, нуклеиновые кислоты, ДНК и РНК, становились героями дня. Если в них записаны все наши инстинкты и безусловные рефлексы, то почему бы им не послужить дощечкой для записи повседневного опыта? Какой же из кислот отдать предпочтение? ДНК хранит наследственную информацию. Значит, РНК? Недаром же за несколько минут количество РНК в работающем нейроне увеличивается на целую треть. Очевидно, циркулирующие по нейронным цепям импульсы нарушают равновесие ионов в молекуле РНК, ее звенья, нуклеотиды, делаются неустойчивыми и перестраиваются в такой последовательности, какую диктует им частотная характеристика импульса. Информация, записанная в этой характеристике, перекодируется на молекулу РНК, а оттуда на синтезируемый ею белок и хранится теперь вечно, повторяясь в конфигурации обновляющихся белков автоматически. Молекула белка становится чувствительной к «своим» импульсам, узнает их и сообщает об этом высвобождением медиаторов, которые и переносят «импульсы узнавания» с нейрона на нейрон при новой циркуляции, сопровождающей воспроизведение. Такая схема сложилась у Хидена к началу 60-х годов, и он принялся за проверку своей гипотезы. Методика опытов была проста. Хиден натягивает проволоку по диагонали; на полу сидит крыса, наверху, где кончается проволока, на дощечке лежит пища. Крыса бежит к пище и попутно учится балансировать. Затем Хиден умерщвляет ее и сравнивает нуклеотидный состав нейронов ее двигательных зон с таким же составом у необученной крысы. Соотношение нуклеотидов в нейронах после обучения меняется, и Хиден убежден, что в этом изменении и зашифрован навык балансировки. Новый опыт. Хиден обучает крысу стучать правой лапой, а потом переучивает ее: дает пищу, только когда она застучит левой. Дальше обучение идет в обратном порядке: от левой к правой. И всякий раз у нейронной РНК в двигательной коре меняется расположение и состав нуклеотидов.

Исследования Хидена произвели сильное впечатление на всех, кто интересовался субстратом памяти. В самом деле, если не нуклеотиды, то что же еще? И вот уже психолог из Мичиганского университета Джемс Мак-Конелл получает сведения о связи РНК с памятью планарий – плоских реснисчатых червей, живущих под камнями у берегов рек и озер и, подобно многим своим собратьям, способных к регенерации. Планария обладает крошечным скоплением нервных клеток, ганглием, а посему способна дня на три усвоить простейший навык – оборонительный рефлекс. Мак-Конелл обучал планарий реагировать на свет как на условный раздражитель, подкрепляя его безусловным – электрическим током. Когда планария запоминала, что от света надо уползать, как от тока, начиналось самое главное. Мак-Конелл разрезал планарию пополам, а через месяц из этих половинок вырастали две новые планарии. И обе половинки обучались реагировать на свет уже не после ста пятидесяти, как прежде, а всего лишь после сорока сочетаний условного рефлекса с безусловным. Хвост помнил то, что запомнила голова с ганглием, и передал память новой голове. Мак-Конелл отрезал у необученной планарий хвост и обучил голову, не вдожидаясь, пока у нее вырастет хвост. Когда хвост вырос, он его тоже отрезал и подождал, пока у него не вырастет голова. Новая голова оказалась сообразительной; что-то передалось от первой головы хвосту, а от него второй голове. Сам хвост был туп, но если у него прежде была голова и эту голову учили, хвост получал от нее какие-то крохи знаний и передавал их новой голове. С чем же передавались эти крохи? Снова Ман-Конелл обучил планарию реагировать на свет, снова разрезал ее и поместил половинки не в воду, а в раствор рибонуклеазы – фермента, расщепляющего РНК. Если дело в РНК, воспоминания вылетят у планарий и из головы и из хвоста. Воспоминания вылетели, но только из хвоста. То ли дело было не в РНК, то ли голова была лучше защищена от РНК-азы, чем хвост. Тут из госпиталя в Олбани поступило сенсационное сообщение о «сайлерт-эффекте». Доктор Юэн Камерон стал кормить своих пациентов, дошедших из-за прогрессирующего склероза до полного слабоумия, пилюлями сайлерта, вещества, стимулирующего синтез РНК, и пациенты стали и соображать и кое-что вспоминать. Идея! Ведь планарии, кроме регенерации, славятся еще и каннибализмом: перед спариванием они приходят в такой экстаз, что начинают пожирать друг друга. И вот уже каннибалы, съевшие обученных планарий, становятся гораздо сообразительнее тех, кто сожрал необученных, а Мак-Конелл получает прозвище Мак-Каннибала. Па Международном конгрессе психологов 1966 г., рассказывая о своих опытах, он заявляет, что те древние племена, которые поедали своих мудрецов, руководствовались верным чутьем, и что всех сидящих в этом зале, не исключая и его самого, надо когда-нибудь превратить в пилюли и прописывать студентам. Мак-Конеллу возражают: молекулы РНК и белков должны при пищеварении расщепляться. Мак-Конелл парирует: как раз планарии всасывают РНК без расщепления. Люди – другое дело, по Камерон и не рассматривал сайлерт как информационное вещество, он просто думал, что раз в умственных процессах активизируется синтез РНК, то надо одряхлевшему мозгу помочь с этим синтезом.

48
{"b":"596000","o":1}