Литмир - Электронная Библиотека
A
A

Кроме того, миелин может регулировать скорость, ускоряя или замедляя сигналы, чтобы они приходили к синапсам в оптимальное время. Это крайне важно, поскольку нейроны разряжаются по закону «все или ничего»: они или дают залп, или молчат, третьего не дано. Наличие залпа зависит от силы входящих импульсов – будет ли достигнут порог активации. Для наглядности Филдс предложил мне вообразить нервную цепь (например, работающую при ударе в гольфе), в которой два нейрона должны комбинировать свои импульсы, чтобы вызывать разряд третьего нейрона, имеющего высокий порог активации. Но чтобы должным образом суммироваться, импульсам следует прийти одновременно – так, два человека, открывая тяжелую дверь, вынуждены толкнуть ее вместе. Необходимый временной промежуток составляет всего четыре миллисекунды – примерно половину того времени, которое требуется пчеле на один взмах крылышками. Если между сигналами пройдет больше четырех миллисекунд, третий нейрон не активируется и мячик отлетит в сторону. «Мозг так сложен и имеет столько соединений, что гены не в состоянии точно закодировать разряды всех нейронов. Но можно добиться синхронизации с помощью миелина», – говорил Филдс.

Хотя точный механизм оптимизации остается загадкой (Филдс предполагает, что существует обратная связь, отслеживающая, сравнивающая и интегрирующая выход), общая картина получается столь элегантной, что понравилась бы и Дарвину: нервная активность вызывает выработку миелина, миелин контролирует скорость проведения импульсов, а это, в свою очередь, обусловливает наши навыки. Миелин вовсе не преуменьшает значение синапсов – наоборот, как подчеркивают Филдс и его коллеги, синаптические изменения остаются ключевым звеном обучения. Но миелин играет важную роль в проявлении этого обучения. Как выразился Филдс: «Сигналы должны передаваться с подобающей скоростью, прибывать к синапсам в нужное время, и мозг контролирует эту скорость с помощью миелинизации».

Теория миелина в изложении доктора Филдса весьма впечатляет. Но меня сильнее поразило то, что он показал мне потом: визуализация работающего мозга. Мы прошли по узкому коридору в другой кабинет и увидели нечто, напоминающее картину из романа Жюля Верна: светящиеся, зеленые, похожие на осьминога образования на черном фоне, вытягивающие усики к тонким волокнам. Как объяснил Филдс, «осьминоги» – это олигодендроциты, клетки, вырабатывающие миелин. Когда нервное волокно разряжается, олигодендроцит это чувствует, захватывает его и начинает обертывать миелином. Усики олигодендроцита изгибаются и вытягиваются, он выдавливает из себя цитоплазму, и остается лишь похожий на целлофан слой миелина. Миелин, все еще связанный с олигодендроцитом, продолжает обертываться вокруг нервного волокна с удивительной точностью, формируя похожую на сосиски структуру.

Код таланта. Гениями не рождаются. Ими становятся - i_005.jpg

Это момент обучения, когда по нервной цепи идут импульсы, олигодендроциты вытягиваются и начинают оборачивать нервное волокно миелином. Зарождается новый навык. (Из статьи Р. Дугласа Филдса «Значение белого вещества» (White Matter Matters). Scientifi c American. 2008. P. 46)

«Это один из самых сложных и тонких межклеточных процессов, – рассказывал Филдс. – И он требует длительного времени. Каждый пласт может обертываться вокруг нервного волокна сорок или пятьдесят раз, и на это уходят дни или недели. А представьте, что нужно обернуть весь нейрон, а затем всю нервную цепь из тысячи нейронов. Это все равно что изолировать трансатлантический кабель»[9].

Итак, вкратце картина такова: каждый раз, когда мы отрабатываем мах клюшкой для гольфа, разучиваем аккорд на гитаре или играем в шахматы, у нас медленно формируются высокоскоростные нервные пути. Мы заставляем нейроны разряжаться, и это воспринимают крошечные зеленые клетки, которые начинают оборачивать эти нейроны миелином. Они захватывают нервные волокна, сжимаются, делают виток, и миелиновая оболочка утолщается. С каждым разом изоляция становится все толще, и нервная проводимость ускоряется, что сопровождается формированием навыков. При этом необходимо преодолевать трудности: чтобы нервные клетки давали оптимальные разряды, следует тренироваться на грани возможностей, делать ошибки, осознавать их и исправлять, медленно формируя нервные цепи. И нужно постоянно поддерживать активность этих цепей, то есть практиковаться, чтобы миелин функционировал должным образом. В конце концов, миелин – это живая ткань.

Подытожим: пора перефразировать пословицу «повторение – мать учения». На самом деле повторение – «мать миелина», а уже миелин – «мать учения». И работа миелина опирается на несколько фундаментальных принципов.

1. Первостепенное значение имеет активность нервной цепи. Миелин не вырабатывается в ответ на желание, пустые идеи или информацию, льющуюся на нас как из ведра. Миелин вырабатывается только в ответ на действие, а именно на прохождение электрических импульсов по нервным волокнам. Причем необходима постоянная активность нервной цепи. Ниже мы обсудим возможные эволюционные причины, а сейчас просто отметим, что углубленной практике способствуют примитивные сигналы, ведущие к сосредоточенности, голоду и даже отчаянию.

2. Миелин универсален. Он один на все навыки. Миелин не «знает», используется ли он для шорт-стопа в бейсболе или музыки Шуберта. Рост миелина подчиняется одним и тем же правилам: он оборачивается вокруг активных волокон. Если вы переедете в Китай, миелин будет оборачиваться вокруг волокон, необходимых для изучения правил спряжения китайских глаголов. Другими словами, миелину все равно, чем вы занимаетесь, главное – тренировка.

3. Миелин оборачивается вокруг волокон, и этот процесс необратим. Подобно дорожному катку, процесс миелинизации идет в одном направлении. Миелинизированное нервное волокно таковым и останется – кроме случаев разрушения миелина вследствие старости или болезни. Именно поэтому так сложно избавиться от привычки. Единственный способ ее изменить – выработать иной навык, отрабатывая новое поведение и миелинизируя новые пути.

4. Возраст имеет значение. У детей формирование миелина контролируется и генами, и обучением. Период активного синтеза миелина продолжается до тридцати лет, причем в определенные критические периоды мозг особенно восприимчив к обучению. Позже выработка миелина потихоньку продолжается примерно до пятидесяти лет, после чего баланс смещается в сторону разрушения. Способность к миелинизации сохраняется в течение всей жизни – к счастью, 5 процентов олигодендроцитов остаются незрелыми и готовыми миелинизировать новые пути. Но все пытавшиеся в зрелом возрасте выучить иностранный язык или научиться играть на музыкальном инструменте знают, что это очень и очень трудно. Поэтому большинство знаменитостей начинали свою карьеру в ранней молодости. Их гены с возрастом не изменились, но способность к выработке миелина уменьшилась.

С одной стороны, на каком-то уровне изучение миелина представляется совершенно новой экзотической нейронаукой. Но с другой стороны, миелин напоминает еще один выработанный в ходе эволюции механизм, который работает каждый день: мышцы. Используя мышцы определенным образом – например, поднимая тяжести, – можно увеличить их силу. А если отрабатывать новые навыки – стараться делать вещи, которые плохо получаются, то в ответ на это нервные связи начнут миелинизироваться и проводить сигналы быстрее и надежнее.

Наши взгляды на мышцы сильно изменились. До 1970-х годов мало кто увлекался марафоном или бодибилдингом, а тех, кто преуспевал в этих дисциплинах, считали одаренными от природы. Но, когда стало известно, как на самом деле работает сердечно-сосудистая система, наше мнение изменилось. Оказывается, можно улучшить свой аэробный и анаэробный обмен, работу сердца и мышц, если действовать на пределе возможностей – поднимать все более тяжелые вещи, бегать на все более длинные дистанции. Как оказалось, культуристами или марафонцами могут стать самые обычные люди, если будут тренироваться должным образом.

вернуться

9

 Более мрачный, но наглядный способ оценить роль миелина в развитии навыков – рассмотреть заболевания, сопровождающиеся дегенерацией миелина. Английская виолончелистка Жаклин дю Пре в двадцать восемь лет странным образом утратила способность играть на виолончели, и восемь месяцев спустя ей диагностировали рассеянный склероз. Подобные заболевания по своей природе противоположны приобретению навыков, поскольку сопровождаются разрушением миелина, хотя межнейронные связи остаются в порядке.

8
{"b":"594065","o":1}