Литмир - Электронная Библиотека
Содержание  
A
A

Вселенная в электроне

Черные дыры — удивительные объекты, а микроскопические черные дырочки обладают, можно сказать, прямо-таки сказочными свойствами. Однако не следует забывать, что они, эти свойства, предсказаны на основании теории, которая еще весьма приближенна и несовершенна. Квантовой теории тяготения, которая требуется для точных вычислений на очень малых расстояниях, еще не создано. Физики умеют пока только очень приближенно «сшивать» решения уравнений общей теории относительности с квантовой теорией. Здесь еще много «белых пятен», и к предсказаниям теоретиков приходится относиться с осторожностью. Например, нельзя с полной уверенностью сказать, чем заканчивается взрыв микроскопической черной дыры. В принципе при этом может произойти полное испарение ее наблюдаемой массы и схлопывание пространства в точку. Но скорее всего, процесс бурного испарения остановится на уровне геометрических квантов, когда раздробленное на «куски» пространство уже не может однозначно разделиться на «свой» и «чужой» миры. Расчеты, выполненные советским академиком М. А. Марковым, показали, что такой исход весьма вероятен. Остаточная масса составляет всего лишь около миллионной доли грамма, независимо от того, какова была начальная масса черной дыры и какова масса полузамкнутого внутреннего мира. Остаточный объект как раз и является частицей-максимоном, о котором шла речь в предыдущей главе.

Не исключено, что при каких-то еще не совсем понятных нам условиях будут образовываться устойчивые объекты с еще меньшей массой, вплоть до массы электрона. Более того, оказывается, что величина электрических зарядов у них тоже такая же, как у элементарных частиц! Для внешнего наблюдателя такой объект, содержащий внутри себя целую вселенную космических тел, будет проявляться как микрочастица. М. А. Марков назвал такие объекты фридмонами.

Можно сказать, что фридмон — это частица с космической начинкой. Как не вспомнить здесь пророчество Анаксагора о частицах-мирах, вложенных друг в друга! Так же, как это произошло с атомами, на новом этапе наука вновь вернулась к древней идее. В случае атомов догадка древнегреческих ученых стала твердо установленным фактом. С фридмонами дело сложнее, их существование еще нужно доказать на опыте. Возможно, что фридмоны (их размеры около 10-33 сантиметров) прячутся где-то глубоко внутри электронов, кварков или прекварков. А может, это затравочные ядра частиц какого-то совершенно нового типа, которые еще только предстоит открыть на опыте. Вокруг каждого такого ядра нарастают «облака» кварков, глюонов, состоящих из них «капель»-мезонов и других элементарных частиц. Все это похоже на кочан капусты с бесчисленными листьями. А исчезающе малая черная дыра в центре — ворота в другую Вселенную. Если бы эти ворота раздвинулись вдруг до размеров бактерии, сама элементарная частица распухла бы до величины всей нашей Вселенной.

Насколько близка к истине такая картина и где на самом деле скрываются фридмоны, теория сказать пока не в состоянии. Но уж очень естественно, без всяких дополнительных гипотез, возникают фридмоны в рамках современной теории. И если почему-либо их все же нет в природе, это само по себе будет удивительной загадкой. Такого мнения сегодня придерживаются многие ученые.

Теперь самое время задать давно напрашивающийся вопрос: ну а наша Вселенная, не является ли она крошечным фридмоном в каком-то другом, внешнем по отношению к нам мире? Может, мы живем внутри электрона, только не знаем об этом?

Для того чтобы мир стал замкнутым, в нем должны действовать мощные, искривляющие его силы тяготения. А это означает, что масса сосредоточенного в нем вещества должна быть достаточно большой, так как именно она создает тяготение. Из формул Фридмана следует, что для замыкания нашей Вселенной нужно, чтобы в каждом кубическом метре пространства в среднем содержалось по десятку нуклонов, протонов или нейтронов. Конечно, распределение вещества в космосе очень неоднородно: массивные сгустки звезд, разделенные огромными промежутками почти полной пустоты. Но и размеры Вселенной колоссальны, и в таком гигантском масштабе она весьма однородна. То же самое с окружающими нас телами. В первой главе мы видели, что вещество состоит в основном из пустоты с редкими зернышками тяжелых атомных ядер, а в крупном масштабе оно выглядит совершенно однородным.

Астрономические наблюдения дают раз в десять меньшее значение средней плотности, чем то, которое нужно для замыкания. Однако, возможно, учтены не все еще виды вещества в космосе. Например, если у нейтрино есть небольшая масса, это сразу даст весомый добавок, так как нейтрино — слабо поглощаемые веществом частицы, и они во множестве рассеяны в пространстве. Так что не исключено, что наша Вселенная действительно фридмон и мы живем внутри электрона или какой-либо другой микрочастицы. С другой Вселенной (с «остальным миром») нас соединяет тогда тонкая горловина — туннель с черной дырой на входе. И может получиться так, что наша Вселенная — электрон в соседней Вселенной, а тот — электрон в нашей. Как в старом анекдоте об охоте на льва: чтобы его поймать, нужно самому сесть в клетку и считать, что подлинной клеткой является все остальное пространство, и готово — лев за решеткой!

Где начало того конца, которым кончается это начало?

В теории фридмонов мы впервые встречаемся с ситуацией, когда для объяснения свойств микрообъектов приходится привлекать космические явления, и, наоборот, решение космологических проблем происхождения и строения Вселенной связывается со свойствами элементарных частиц. Гипотеза фридмонов показала условность наших представлений о самом большом и самом малом. Привычное разделение мира на космос и микромир, оказывается, не имеет абсолютного значения и применимо лишь в определенных границах. В зависимости от условий и точки зрения, один и тот же объект может выглядеть, как микроскопически малая частица и как грандиозная по своим размерам Вселенная. Лестницу структурных форм материи нельзя мыслить в виде бесконечного числа этажей-ступеней, уходящих в область исчезающе малых интервалов, с одной стороны, и в область неограниченно больших масштабов — с другой. Если принять гипотезу фридмонов, бесконечность мира, скорее, оказывается похожей на круг, где ультрамалое одновременно является и ультрабольшим. Углубляясь в недра материи, мы неожиданно снова возвращаемся в космос, и наоборот. Поди разберись, где тут начало и где конец, что простое, а что сложное!

Вселенная в электроне - i_061.jpeg

Вселенная устроена необычайно сложно. Свойства, принадлежащие, казалось бы, к противоположным этажам мироздания, неожиданно оказываются тесно связанными, а иногда и переходят одно в другое. Все это настолько непривычно, что у человека, который впервые знакомится с выводами теории относительности, как говорится, иногда ум за разум заходит. Все не так, как в школьной физике.

Однажды какая-то газета напечатала объявление, в котором говорилось, что поскольку новая теория Эйнштейна перевернула физику с ног на голову, занятия по физике в школах отменяются до тех пор, пока профессор Эйнштейн не поставит эту науку обратно на ноги. И хотя объявление появилось первого апреля, Эйнштейн получил массу писем с вопросом: когда же, наконец, он восстановит порядок в физике?

Здесь опять уместно повторить: современную физику нельзя просто выучить, к ней надо еще и привыкнуть!

Еще недавно пространство представляли себе сложенным из плоских слоев пустоты, похожим на стопку огромных, очень тонких стекол. Сегодня мы знаем, что оно может быть затейливо искривлено и скручено. Если для наглядности предположить, что Вселенная имеет всего два измерения, то вместе с отпочковавшимися дочерними мирами она будет представлять собой что-то вроде суммарной поверхности пор в губке, где каждая пора-мир соединяется тоненьким капилляром с соседней. В теории Фридмана эти соединения можно перерезать, в квантовой теории этого сделать нельзя. Получается очень сложная переплетающаяся фигура с множеством прорех и дыр. Реальная Вселенная устроена аналогично с тем отличием, что она не двух-, а трехмерная поверхность в четырехмерном мире.

27
{"b":"593833","o":1}