Литмир - Электронная Библиотека

Логическая теория математики такая же увлекательная, изощренная спекуляция, как и любая научная теория. Это эмпирицистская теория, и, следовательно, если не показана её ложность, она остается навеки предположительной.

Догматики, презирающие предположения, могут выбирать между надеждами на крайнюю тривиализацию и надеждами оправдать индукцию. Скептики отметят, что, устанавливая эмпирицистский характер расселовской теории, мы лишь демонстрируем, что она не содержит какого-либо знания, что она ― только софизм и иллюзия. Чистый скептик редок, и мы замечаем, что пессимистический догматик в конце концов тоже скептик. Эти пессимистические догматики требовали, чтобы мы бросили спекуляции и ограничили наше внимание некоторой узкой областью, которую они элегантно, но без каких-либо реальных оснований удостоверяют спасенной. В новейшей философии математики скептическим догматизмом был отмечен интуитивизм, охарактеризованный Гильбертом как "предательство нашей науки". Вейль аттестует работу Рассела в терминах, близких к тем, которыми оперировал кардинал Беллармино, называя теорию Галилея просто "математической гипотезой". Согласно Вейлю, Principia основывают математику «не на логике, но на своего рода логическом рае, вселенной довольно-таки сложной структуры, снабженной всей "необходимой обстановкой"… Побуждения очевидны, но вера в этот трансцендентальный мир ничуть не меньшее испытание для нас, чем вера в доктрины первых отцов церкви или средневековых философов-схоластов» (Weyl, 1949, р. 233; Вейль, 1984, с. 332). Интуиционисты, разумеется, правы, называя расселовскую логику контринтуитивной и погрешимой. Но несмотря на все это, она могла бы быть все же истинной.

Эмпирицистская теория, однако, должна пройти строгие проверки. Как могли бы мы проверить расселовскую логику? Все истинные базовые предложения ― разрешимые фрагменты арифметики и логики ― выводимы в ней, и таким образом она, по-видимому, не имеет потенциальных фальсификаторов. Так что единственный способ критики этой своеобразной эмпирицистской теории ― проверить ее на непротиворечивость. Это ведет нас к гильбертовскому кругу идей.

3. Остановка бесконечного регресса за счет тривиальной метатеории

Гильбертовская*[25] метаматематика была "замыслена, чтобы раз и навсегда положить конец скептицизму" (Ramsey, 1926, р. 68). Таким образом, ее цель была та же, что и у логицизма:

"Приходится принять, ― писал Гильберт в 1926 г., ― что ситуация, в которую мы попали из-за парадоксов, нетерпима. Давайте представим: в математике, в этой парадигме достоверности и истины, наиболее общая формация понятий и выводов, которые учатся, изучаются и используются, ведет к абсурдностям. Но если даже математика терпит неудачу, где же нам искать достоверность и истину? Есть, однако, удовлетворительный метод обойти парадоксы".

Гильбертовская теория базируется на идее формальной аксиоматики. Гильберт утверждал, что: а) все формально доказанные арифметические высказывания ― арифметические теоремы ― будут с достоверностью истинными, если формальная система непротиворечива, т.е. если А и не-А не являются одновременно теоремами; б) все арифметические истины могут быть формально доказаны; в) метаматематика, эта новая ветвь математики, устанавливаемая, чтобы доказывать непротиворечивость и полноту формальных систем, будет особым случаем евклидианской теории ― "финитной" теорией с тривиально истинными аксиомами, содержащими только совершенно общеизвестные термины, и с тривиально безопасными выводами. "Установлено, что принципы, используемые в метаматематическом доказательстве того, что аксиомы математики не ведут к противоречиям, настолько очевидно истинные, что не позволяют сомневаться в себе даже скептикам" (Ramsey, 1926, р. 68). Метаматематическое доказательство ― это "конкатенация самоочевидного интуитивного (inhaltlich) проникновения" (Neumann, 1927, р. 2). Арифметические истины ― и ввиду уже совершенной арифметизации математики все виды математических истин ― будут покоиться на твердой, тривиальной, "глобальной" интуиции и таким образом, как говорил Гильберт, на "абсолютной достоверности" (Гильберт, 1948, с.391).

Решающим препятствием на пути этой надежды на евклидианскую метаматематику явилась вторая теорема Гёделя. Бесконечный регресс в доказательстве не может иссякнуть в "финитной" тривиальной метатеории: доказательства непротиворечивости должны содержать достаточно изощренности, чтобы представить спорной непротиворечивость теории, в которой они проводятся, и, следовательно, они не могут не быть погрешимыми. Например, предположение Гольдбаха о том, что любое четное число есть сумма двух простых чисел, формально могло бы быть доказано завтра, но мы никогда не узнаем, что оно истинно. Ибо оно было бы истинно, только если метаматематика, метаметаматематика и т.д. до бесконечности были бы непротиворечивы. Этого мы никогда не познаем. Формализация может дать сбой, и наша аксиоматическая система может оказаться совсем без модели.

На второй сбой, который может дать формальная теория, указывает первая теорема Гёделя: если формальная теория имеет модель, то она имеет больше моделей, чем подразумевается (intended). В непротиворечивой формальной теории мы можем доказывать те и только те высказывания, которые истинны во всех моделях, так что мы не можем формально доказать высказывания, которые истинны в подразумеваемой модели и ложны в неподразумеваемой модели. Первая теорема Гёделя показывает, что селективность формальных систем, включающих арифметику, хронически плохая, ибо никакая непротиворечивая формализация арифметики не позволяет "отстроиться" от неподразумеваемых моделей, существенно отличных от подразумеваемой модели.[26] Следовательно, в любой непротиворечивой формализации найдутся формально недоказуемые арифметические истины. Если предположение Гольдбаха истинно в его подразумеваемой интерпретации, но ложно в неподразумеваемой интерпретации, то в какой-либо формализации не будет формального доказательства, ведущего к нему.

Открытие Гёделем ω-противоречивых систем сделало положение еще хуже. Оказалось, что "непротиворечивость системы не исключает возможности структурной ложности". Формализованная арифметика может быть непротиворечивой, т.е. иметь модели, но ни одна из этих моделей не будет подразумеваемой моделью, каждая модель, коль скоро она содержит все числа, может содержать другие чужеродные элементы, которые способны обеспечить контрпримеры высказываниям, истинным в узкой области подразумеваемой интерпретации. В непротиворечивой, но ω-противоречивой системе мы могли бы доказать отрицание предположения Гольдбаха, даже если это предположение является истинным. В формализации, дающей сбой такого извращенного рода, истина и доказуемость раздельны. Если противоречивая система арифметики или логики не имеет модели, т.е. близка к тому, чтобы быть ничем, то ω-противоречивая система арифметики или логики не имеет подразумеваемой модели, т.е. даже близко не подходит к арифметике или логике.

Открытие ω-противоречивости и связанных с ней явлений положило конец гильбертовской формализации, центральной идеей которой была та, что формализация "устраняет всякую неопределенность в отношении того, что такое предложение теории или что такое доказательство в ней… Формализация теории имеет целью дать явное определение понятия доказательства. После того как это сделано, нет надобности обращаться каждый раз прямо к интуиции" (Kleene, 1952, р. 63, 86; Клини, 1957, с. 62, 81). То, что это предположение было опровергнуто, выражают обычно эвфемизмом: "синтаксическое понятие доказательства уступило дорогу семантической идее доказательства", эвфемизмом, прячущим поражение главной догматической идеи ― спасти математику от скептицизма.

вернуться

25

*Д. Гильберт (1862-1893). Его биографии посвящена книга: Рид К. Гильберт. С приложением обзора Г. Вейля математических трудов Гильберта. М.: Наука, 1977.

вернуться

26

Мы использовали здесь терминологию Кемени: "Две модели существенно различны, если существуют предложения, истинные в одной, но ложные в другой" (Kemeny, 1958, р. 164).

7
{"b":"593323","o":1}