Литмир - Электронная Библиотека
Содержание  
A
A

У Ньютона эта метафизическая подкладка его математической физики явно выражена почти в аксиоматической форме. С самого зачина своего знаменитого труда «Математические начала натуральной философии» он объясняет, что ведет построения в абсолютном пространстве и абсолютном времени. «I. Абсолютное, истинное математическое время само по себе и по самой своей сущности, без всякого отношения к чему-либо внешнему протекает равномерно, и иначе называется длительностью»[22]. «П. Абсолютное пространство по самой своей сущности безотносительно к чему бы то ни было внешнему остается всегда одинаковым и неподвижным»[23]. И абсолютное пространство, и абсолютное время являются здесь евклидовыми геометрическими пространствами, то есть пространствами, в которых можно производить измерения, применять математику. Причем пространства эти существенно бесконечные. Ньютон специально отграничивает свое понимание пространства от аристотелевского «места». По Ньютону, место – понятие геометрическое: «Место есть часть пространства, занимаемая телом, и по отношению к пространству бывает или абсолютным, или относительным. Я говорю «часть пространства», а не положение тела и не объемлющая его поверхность»[24]. Что гарантирует это отождествление геометрического пространства и физического? Ньютон не разбирает этого вопроса специально, но по его отдельным замечаниям можно заключить, что это богословские аргументы. В конце книги в «Общем поучении» Ньютон пишет, что то гармоничное сочетание движений Солнца и планет, которые предсказывает его теория и подтверждает эксперимент, «…не могло произойти иначе, как по намерению и по власти могущественного и премудрого существа»[25]. Говоря об этом существе, о Боге, философ-ученый пишет: «Он не есть вечность или бесконечность, но Он вечен и бесконечен, Он не есть продолжительность или пространство, но продолжает быть и всюду пребывает. Он продолжает быть всегда и присутствует всюду, всегда и везде существуя; Он установил пространство и продолжительность. Так как любая частица пространства существует всегда и любое неделимое мгновение длительности существует везде, то несомненно, что Творец и Властитель всех вещей не пребывает где-либо и когда-либовсегда и везде)»[26].

В «Оптике» Ньютона также есть общефилософские рассуждения, в которых ученый говорит о своих метафизических предпосылках. Гармония органов природных существ несомненно свидетельствует, по Ньютону, о мудрости и искусстве их Творца. «… Пребывая всюду, он более способен своею волею двигать тела внутри своего безграничного чувствилища и благодаря этому образовывать и преобразовывать части вселенной, чем мы посредством нашей воли можем двигать части наших собственных тел [курсив мой. – В. К.]»[27]. Тем самым пространство и время физической картины мира, даваемой классической механикой, оказываются чувствилищем Бога. Это гарантирует и их абсолютность, и их бесконечность. Именно так, через призму богословского видения, идея бесконечности вселенной входит в науку и, шире, в общекультурное сознание XVIII века, становясь со временем – с утерей веры в Бога – любопытным парадоксом…

3. «Метафизика геометров»

До этого мы говорили о метафизических предпосылках в физике, так сказать, макро- и мегауровней. Но возникающее в XVII веке новое естествознание вынуждено вводить еще и метафизику микроуровня. Это естествознание, как мы подчеркиваем, становится, в отличие от античной физики, математическим естествознанием. Основным его языком будут дифференциальное и интегральное исчисления и выходящие из них в дальнейшем конструкции: дифференциальные уравнения, теория комплексной переменной, вариационное исчисление и т. д. Дифференциальное и интегральное исчисления кладут в свое основание концепцию актуально бесконечно малой величины[28], то есть такой, которая меньше любой положительной величины, но одновременно и не есть нуль, – живой парадокс. Античная мысль была знакома с подобными понятиями, но именно в силу этой парадоксальности не желала использовать их в науке. Аристотель дает право на существование в науке только потенциальной бесконечности: процессу увеличения натуральных чисел 1,2, 3…., или процессу же бесконечно продолжающегося деления отрезка и его частей на все более мелкие части. Но «каково число всех чисел?» или «можно ли разделить отрезок до конца, до точек?» – на эти вопросы античная наука отказывается отвечать. Актуальная бесконечность нарушает фундаментальные аксиомы науки (например, часть меньше целого), и поэтому ее запрещается использовать в науке. Отрезок можно бесконечно делить, но нельзя сказать, что он состоит из точек: континуум – это качественно другая реальность, чем множество точек. Отказ от этой установки ведет к апориям («парадоксы Зенона»).

Но вот XVII век вводит в науку понятие актуально бесконечных величин. Пионеры науки Нового времени – Галилей, Лейбниц, Ньютон – прекрасно осведомлены об античном табу на актуальную бесконечность, но, тем не менее, они вводят эти новые конструкции и, более того, делают их основным инструментом математического естествознания. История легализации актуальной бесконечности в науке существенным своим моментом имеет христианское богословие. Античная мысль не может допустить спекуляции об актуально бесконечном, грубо говоря, по простой причине: у нее нет бесконечного предмета, к которому можно бы было привязать эти рассуждения. Но вот с приходом христианства такой «предмет» появляется: христианский Бог довольно быстро, хотя и не сразу, осознается богословами как бесконечно могущественный, бесконечно благой, бесконечно мудрый[29]. Богословы начинают рассуждать о бесконечности Бога, о возможности разных степеней бесконечности, о существовании бесконечностей в тварном мире и т. д. Ко времени поздней схоластики в западном богословии уже налицо целая «культура» обсуждений и конструкций с актуальной бесконечностью, причем не только богословских, но и натурфилософских[30]. Возрождение с его интересом к оккультизму и пафосом «раскрытия тайн» еще более узаконивает тему бесконечности. Поэтому не удивительно, что XVII столетие легализует концепцию актуальной бесконечности и в науке, в дифференциальном и интегральном исчислениях.

Легализует, но при этом ясно осознает, что тем самым строится уже новая наука. Лейбниц, один из создателей дифференциального и интегрального исчислений, прекрасно понимал, что с ними неизбежно приходит некая новая метафизика: «…Судьба даровала нашему веку прежде всего то, что после столь долгих лет забвения вновь воссиял светоч математики, как я его называю. Ведь были открыты и развиты Архимедовы способы исчерпывания через неделимые и бесконечные, что можно было бы назвать метафизикой геометров, и что, если я не ошибаюсь, было неизвестно большинству древних, за исключением Архимеда» [курсив мой. – В. К.][31].

Что же это за новая геометрическая метафизика? Речь идет о введении неких новых постулатов в геометрию, необходимых для конструкций дифференциального исчисления. Так, в одном из первых учебников дифференциального исчисления маркиза Г. Ф. Лопиталя, ученика и соратника Лейбница, в деле развития этого нового учения мы читаем: вводится «…требование или допущение: требуется, чтобы можно было рассматривать кривую линию как совокупность бесконечного множества бесконечно малых прямых линий, или же (что то же самое) как многоугольник с бесконечным числом бесконечно малых сторон…»[32]. То, что многоугольник, вписанный, например, в окружность, при бесконечном увеличении (удвоении) его сторон будет стремиться к окружности, это, конечно, античные математики знали и даже использовали в своих вычислениях. Однако никто не считал на основании этого, что окружность есть бесконечный многоугольник с бесконечно малыми сторонами!.. Более того, острое чувство качественного отличия окружности от любого многоугольника, кривой от прямой, за которым стоял глубоко осознанный опыт онтологических рангов реальности, приводил к тому, что это соотношение вписанного многоугольника и описанной окружности нередко понимали как символ соотношения рассудочного знания и реальности: кажущаяся близость, но принципиальное внутреннее отличие…

вернуться

22

Ньютон И. Математические начала натуральной философии. Пер. с лат. и комментарии А. Н. Крылова. М., 1989. С. 30.

вернуться

23

Там же.

вернуться

24

Цит. соч. С. 31.

вернуться

25

Цит. соч. С. 659.

вернуться

26

Цит. соч. С. 660.

вернуться

27

Ньютон И. Оптика, или Трактат об отражениях, преломлениях, изгибаниях и цветах света. М.; Л., 1927. С. 313. И, однако, подчеркивает Ньютон далее, мы не можем рассматривать мир как тело Бога или Бога как душу мира (см. там же).

вернуться

28

Как и актуально бесконечно большой величины.

вернуться

29

Подробнее см. мои работы: Катасонов В. Н. Концепция актуальной бесконечности как «научная икона» Божества // Христианство, наука, культура. М., 2005; Катасонов В. Н. Боровшийся с бесконечным. Философско-религиозные аспекты генезиса теории множеств Г. Кантора. М., 1999.

вернуться

30

См. об этом, например, в прекрасной книге: Зубов В. П. Развитие атомистических представлений до начала XIX века. М., 1965. Гл. П.

вернуться

31

Элементы разума. С. 452 // Лейбниц Г. В. Сочинения в 4 томах. Т. 3. М., 1984.

вернуться

32

Лопиталь Г. Ф. Анализ бесконечно малых. М.; Л., 1935. С. 63–64.

4
{"b":"588827","o":1}