Литмир - Электронная Библиотека
A
A

Сейчас мы разберем один из простейших случаев: мы точно знаем ценовой диапазон ожидаемых предложений, и все предложения в данном диапазоне равновероятны. Если нам нет нужды волноваться о том, что предложения (или наши сбережения) подойдут к концу, то мы можем сосредоточиться исключительно на расчетах, что мы приобретем или потеряем, если будем ждать более выгодной сделки. Если мы отклоним нынешнее предложение, то сможет ли вероятность более выгодного предложения, умноженная на ожидаемую нами разницу в выгоде, компенсировать связанные с ожиданием расходы? Как выясняется, математика здесь довольно проста, и мы видим прямую зависимость стоп-цены от цены ожидания следующего предложения.

Этот математический расчет не будет волновать нас, если мы продаем многомиллионный особняк или полуразвалившийся сарай. В этом случае будет иметь значение только небольшая разница между самой низкой и самой высокой ценой, которую нам, вероятно, предложат. Если мы введем конкретные цифры, то увидим, что данный алгоритм предлагает нам множество четких указаний. Допустим, ценовой диапазон ожидаемых нами предложений варьируется от $400 000 до $500 000. Если цена ожидания незначительна, мы можем быть почти бесконечно разборчивы. Если цена ожидания следующего предложения составляет всего $1, то мы получим максимальную выгоду, всего лишь дождавшись покупателя, который предложит нам за дом $499 572,99 и ни центом меньше. Если ожидание обойдется нам в $2000 за предложение, придется дотянуть до $480 000. В условиях медленного роста рынка, где ожидание будет стоить $10 000, нам придется принять любое предложение, которое превысит $455 279. Ну и наконец, если цена ожидания составит половину или даже больше от ожидаемого нами диапазона предложений (в данном примере это $50 000), то нет абсолютно никакого смысла тянуть дальше и нужно приложить максимум усилий, чтобы продать дом первому, кто назовет свою цену, и покончить с этим. Нищим выбирать не приходится.

Алгоритмы для жизни: Простые способы принимать верные решения - i_007.png

В данном примере важно отметить, что устанавливаемый нами предел зависит только лишь от стоимости поисков. Поскольку вероятность того, что следующее предложение окажется лучше предыдущего (а также стоимость выяснения этого) никогда не изменится, то нам нет смысла снижать стоп-цену, так как поиски продолжаются и не зависят от нашей удачливости. Мы устанавливаем ее однажды, прежде чем выставить дом на продажу, и в дальнейшем ориентируемся на нее.

Специалист по оптимизации Висконсинского университета в Мэдисоне Лора Альберт Маклей воспользовалась своими знаниями проблем оптимальной остановки, когда пришло время продавать ее собственный дом. «Первое же полученное нами предложение было замечательным, – рассказывает она, – но оно предполагало огромные затраты с нашей стороны, потому что покупатели просили нас съехать на месяц раньше, чем мы были к этому готовы. Было еще одно конкурентоспособное предложение… [но] мы держались, пока не получили подходящее нам». Многих продавцов необходимость отклонить парочку выгодных предложений весьма нервирует, особенно если последующие предложения уступают им в выгоде. Но Маклей твердо стояла на своем и сохраняла спокойствие. «Это было бы очень, очень тяжело, – признается она, – если бы я не знала, что математика на моей стороне».

Данный принцип применим к любой ситуации, где вам предстоит получить ряд предложений и заплатить за то, чтобы искать дальше или ждать следующего. Следовательно, это относится к случаям, которые выходят далеко за рамки продажи недвижимости. Например, экономисты, пользуясь этим алгоритмом, моделируют процесс поиска людьми работы и наглядно объясняют кажущийся на первый взгляд парадоксальным факт одновременного существования на рынке вакансий и безработных.

На самом деле, у этих вариаций проблемы оптимальной остановки есть еще одно поистине удивительное свойство. Как мы помним, возможность вернуть упущенный в прошлом шанс была жизненно важной в любовных поисках Кеплера. Но в случае с продажей дома или поисками работы вам никогда, ни в коем случае не следует так поступать, даже если есть возможность вернуться вновь к ранее отклоненному предложению и даже если это предложение все еще не утратило своей актуальности. Если оно не превышало ваш пороговый показатель на тот момент, оно не превысит его и сейчас. То, что вы заплатили за возможность продолжить поиски, – это невозвратные издержки. Не идите на уступки, не жалейте ни о чем. И никогда не оглядывайтесь.

Когда парковаться

Я пришел к выводу, что три главные административные проблемы в кампусе – это секс у студентов, спорт у выпускников и парковка у всего преподавательского состава.

Кларк Керр, президент Калифорнийского университета в Беркли (1958–1967)

Еще одна сфера, где в избытке имеется проблема оптимальной остановки и где бессмысленно сожалеть об упущенном шансе, – это все, связанное с автомобилем. Автомобилисты уже фигурировали в упомянутой нами проблеме секретаря, а современный стиль жизни, побуждающий постоянно двигаться вперед, превращает каждую поездку на машине еще и в проблему остановки: поиски ресторана; поиски туалета и, что наиболее остро для городских водителей, поиски парковочного места.

Кто лучше расскажет обо всех тонкостях парковки, чем заслуженный профессор Калифорнийского университета в Лос-Анджелесе по градопланированию Дональд Шоуп, которого Los Angeles Times назвала рок-звездой парковки? Мы ехали к нему на встречу из Северной Калифорнии, заверив Шоупа, что оставили в запасе достаточно времени для непредвиденных проблем с трафиком. «Что до планирования непредвиденных проблем с трафиком, я думаю, что стоит планировать предвиденные проблемы», – парировал он. Шоуп прославился благодаря своей книге «Высокая цена бесплатной парковки», в которой он во многом внес ясность в процесс, который на самом деле имеет место, когда мы движемся из пункта А в пункт Б.

Бедного водителя стоит пожалеть! Идеальное парковочное место, в понимании Шоупа, – то, в котором умело соблюден точный баланс между стоимостью места парковки, неудобством от ходьбы пешком, временем, затраченным на поиски свободного пространства (сильно различается в зависимости от района, времени суток и т. д.), и сожженным за все это время бензином. Условия уравнения меняются с количеством пассажиров в автомобиле, которые могут разделить между собой плату за парковку, но не временем, потраченным на поиски места или на то, чтобы дойти пешком от места парковки до нужного пункта. Водитель должен учитывать, что пространство с наибольшим количеством свободных парковочных мест будет пользоваться наибольшим спросом. Поиски парковки всегда включают в себя элемент теории игр: пока вы пытаетесь перехитрить всех водителей на дороге, они, в свою очередь, пытаются перехитрить вас[5]. Таким образом, большинство проблем с парковкой сводится к одному фактору – уровню заполненности. Это отношение общего числа парковочных мест к количеству занятых в данный момент. Если уровень заполненности низкий, то можно без проблем найти хорошее место. Если же он высок, то поиск хоть какого-нибудь места, где можно было бы оставить машину, становится поистине сложной задачей.

Шоуп утверждает, что проблемы с парковкой возникли вследствие политики городских властей, которая привела к невероятно высокому уровню заполненности. Если плата за парковку в определенных районах слишком низкая (или – о ужас! – парковка и вовсе бесплатная), то большинство автолюбителей будет стремиться припарковаться именно там, а не чуть подальше, откуда придется немного пройти пешком. Таким образом, каждый старается встать там, но все места оказываются заняты, и люди в конечном счете тратят уйму времени и бензина, кружа по району в поисках парковочного места.

вернуться

5

Более подробно вычислительные риски теории игр рассматриваются в главе 11.

7
{"b":"586402","o":1}