Мы воспринимаем также еще один параллелизм: наше мышление исходит из единства и стремится создать единство; мы наблюдаем единство вещества и материи и повсюду констатируем единство законов природы. При этом природа весьма охотно идет нам навстречу в наших исследованиях, как бы с готовностью раскрывая свои тайны. Сильно разреженное распределение массы в мировом пространстве способствовало открытию и уточнению закона всемирного тяготения Ньютона. Несмотря на огромную величину скорости света, Майкельсон сумел достоверно установить, что при достаточно быстром обращении Земли вокруг Солнца не выполняется закон сложения скоростей ньютоновской механики. Меркурий, чтобы доставить нам удовольствие, движется так, что его перигелий прецессирует, и, измеряя величину прецессии, мы получаем возможность проверить теорию Эйнштейна. Луч света от неподвижных звезд проходит вблизи Солнца, что позволяет нам наблюдать его искривление.
Но еще больше обращает на себя внимание то, что мы в несколько ином смысле, чем Лейбниц, называем предустановленной гармонией, которая является воплощением и реализацией математической мысли. Старыми примерами предустановленной гармонии служат конические сечения, ставшие предметом изучения задолго до того, как мы догадались, что планеты и даже электроны движутся по эллиптическим орбитам. Но самым грандиозным и чудеснейшим примером предустановленной гармонии может служить знаменитая теория относительности Эйнштейна.
Такое совпадение между природой и мышлением, экспериментом и теорией можно понять только в том случае, если принять во внимание формальный элемент и связанный с ним механизм с обеих сторон — природы и нашего разума. Математический процесс элиминации, или исключения приводит, как нам кажется, к точкам покоя и остановкам, в которых пребывают как тела в реальном мире, так и идеи в мире духовном, и тем самым становятся доступными контролю и сравнению.
Между тем даже эта предустановленная гармония отнюдь не исчерпывает взаимосвязи между природой и мышлением и не открывает глубочайшие тайны нашей проблемы.
1. Давид Гильберт, 1886 год
2. Франц Гильберт, сын Давида и Кэт Гильбертов
3. Давид Гильберт, 1900 год
4. Адольф Гурвиц. Кёнигсберг (Калининград)
5. Давид Гильберт, 1912 год
6. Давид Гильберт и Кэт Мерош, 1892 год
7. Отто Гильберт, отец Давида Гильберта. Студент университета, 1850 год
8. Герман Минковский после получения Большой премии Парижской Академии
9. Кёнигсберг
10. Геттингенский математический институт
• Давид Гильберт, 1932 год
Чтобы разобраться в ней, рассмотрим весь комплекс физико-астрономических знаний. В современной науке мы отмечаем одну точку зрения, далеко выходящую за рамки старых постановок вопроса и цели нашей науки. Заключается она в том, что современная наука учит не только определять в смысле классической механики по данным существующего ныне настоящего будущие движения и ожидаемые явления, но и подсказывает, что реально существующие ныне состояния материи на Земле и во Вселенной не случайны или произвольны, а следуют из физических законов.
Важнейшим тому примером служат модель атома Бора, структура мира звезд и, наконец, вся история развития жизни. Следование аксиоматическим методам должно, как нам кажется, действительно привести к системе законов природы, соответствующих в своей совокупности действительности, и необходимо лишь мышление, то есть дедукция в терминах понятий, чтобы построить всё физическое знание; и тогда был бы прав Гегель, утверждавший, что все явления природы можно вывести из понятий. Но такое заключение неверно. Действительно, как обстоит дело с происхождением мировых законов? Как мы их получаем? Откуда нам известно, что они соответствуют действительности? Ответ гласит, что обо всем этом мы знаем только из опыта.
В отличие от Гегеля мы знаем, что законы окружающего мира не могут быть получены никаким другим способом, кроме как из опыта. В построении системы физических понятий могут принимать участие и различные чисто умозрительные точки зрения, но о том, соответствуют ли Друг другу установленные законы и построенная из них логическая система понятий, в состоянии судить только опыт. Иногда идея впервые возникает в области чистого мышления, как это было, например, с идеей атомистики Демокрита, тогда как существование атомов было доказано экспериментальной физикой лишь через две тысячи лет. Иногда опыт опережает, и под его влиянием разум вырабатывает умозрительную точку зрения. Так под сильным воздействием эксперимента Майкельсона было устранено глубоко укоренившееся представление об абсолютном времени, и Эйнштейн смог сформулировать идеи специальной теории относительности.
Тот же, кто вопреки этому отрицает, что законы окружающего нас мира происходят из опыта, должен утверждать, что помимо дедукции и опыта существует некий третий' источник познания.
В действительности философы утверждали (классическим представителем этих взглядов был Кант), что помимо логики и опыта мы априори обладаем еще некоторым знанием о действительности. При этом априорность выступает не больше и ire меньше как основополагающая установка или как выражение некоторых необходимых предпосылок мышления и опыта. Но границу между тем, чем, с одной стороны, мы обладаем априори, а с другой стороны, тем, для чего необходим опыт, мы должны проводить не так, как это делал Кант; Кант сильно переоценивал роль априорного и объем этого понятия.
Во времена Канта можно было думать, что существовавшие тогда представления о пространстве и времени обладают такой же степенью общности и так же непосредственно связаны с действительностью, как, например, представления о числе, упорядоченности и величине, которые мы постоянно и привычно используем в математических и физических теориях. При таком подходе теория пространства и времени, в частности геометрия, должна быть чем-то таким, что так же, как и арифметика, предшествует всему естествознанию. Но от точки зрения Канта отказались еще до того, как этого потребовало развитие физики, в частности Риман и Гельмгольц, причем с полным основанием, ибо геометрия есть не что иное, как та самая часть общей физической системы понятий, которая отображает возможные взаимосвязи между положениями твердых тел в мире реальных вещей. Разумеется, то, что вообще существуют подвижные твердые тела и каковы взаимосвязи между положениями тел,— дело опыта. Теорема о том, что сумма углов в треугольнике равна двум прямым углам, также может быть установлена или опровергнута с помощью опыта, о чем знал еще Гаусс. Например, если бы было доказано, что все факты, выражаемые теоремами о конгруэнтности, соответствуют опыту, а сумма углов в некотором треугольнике, построенном из твердых тел, оказалась меньше двух прямых углов, то никто не стал бы утверждать, что аксиома о параллельных должна выполняться в пространстве реальных тел.
Принимая априорную точку зрения, необходимо соблюдать величайшую осторожность; ведь многое из того, что когда-то было принято считать априорным знанием, ныне признано совершенно неприемлемым. Наиболее яркий тому пример — представление об абсолютной синхронности. Абсолютная синхронность не существует, как ни привыкли мы к этому представлению с детства, поскольку в повседневной жизни речь идет лишь о небольших расстояниях и медленных движениях. Если было бы иначе, то никому не пришло бы в голову вводить абсолютное время. Но даже такие глубокие мыслители, как Ньютон и Кант, неоднократно высказывали сомнение в абсолютном времени. Осторожный Ньютон сформулировал требование абсолютности времени предельно четко: абсолютное истинное время течет само по себе и в силу своей природы равномерно и безотносительно к какому-либо телу. Тем самым Ньютон честно отрезал все пути к отступлению и компромиссу, а Кант, критически мыслящий философ, оказался совсем не критичным, поскольку без каких-либо оговорок принял точку зрения Ньютона. И только Эйнштейн решительно освободил нас от предрассудка абсолютного времени — и это навсегда останется одним из величайших достижений человеческого духа. Теория гравитации Эйнштейна показала со всей очевидностью, что геометрия есть не что иное, как ветвь физики; геометрические истины во всех отношениях устанавливаются так же, как физические истины, и ничем не отличаются от последних. Например, теорема Пифагора и закон всемирного тяготения Ньютона взаимосвязаны, поскольку они оба подчиняются одному и тому же фундаментальному физическому понятию — потенциалу. Но для каждого, кто знаком с теорией гравитации Эйнштейна, не подлежит сомнению, что оба эти закона, столь различные внешне и считавшиеся ранее столь далекими, один из которых стал известен еще в древности и был одной из первых теорем, изучаемых в школе, а другой описывает взаимодействие масс, не только однотипны по своей природе, но и являются лишь частью одного и того же общего закона.