Французский математик Анри Пуанкаре был первым, кто указал на то, что источник парадоксов, атакующих логику, заключается в цикличности, в виде автореференции или принадлежности самому себе. Парадоксы держались на использовании непредикативных определений — тех, в которых определяемое входит в состав определения. Позже Рассел назвал это принципом порочного круга. Неудивительно, что нарушение этого принципа ведет к парадоксам, антиномиям и противоречиям, многие из которых признаются даже вне формальных языков, в естественных языках. В качестве примера служит хорошо известный парадокс лжеца, приписываемый Эпимениду Критскому (в своих письмах о нем упоминает даже святой Павел). В одном из стихотворений Эпименид порицает критян, называя их лжецами. Но поскольку он сам критянин, его утверждение, относящееся к самому себе, преобразуется в «я лгу». В этом случае то, что он говорит, не может быть правдой, значит, критяне не лгут. Но если они не лгут, то и Эпименид тоже, поэтому получается, что критяне лгут, и так далее.
Математическая логика, как ее стали называть вслед за Пеано, создавала одни только неприятности. И Пуанкаре, который считал ее бесполезной, смеялся: «Она уже не стерильна, она порождает противоречия». Несмотря ни на что логистическая программа, составленная Фреге, получила развитие благодаря бесцеремонности Бертрана Рассела и Альфреда Норта Уайтхеда (1861-1947).
В 1900 году на международном конгрессе по философии, проходившем в Париже, Рассел столкнулся с символической реформой Пеано. В 1889 году Пеано представил свои «Принципы арифметики», содержащие знаменитые пять аксиом (включая принцип индукции) для натуральных чисел, используя новую символику, которую разработал сам. В сообществе логиков и математиков одномерная символика Пеано была принята лучше, чем двумерная символика Фреге (за исключением его учеников, которые взбунтовались и не успокоились, даже когда Пеано предложил поставить всем зачет). В 1902 году, верный логицизму Фреге и символизму Пеано, Рассел опубликовал «Принципы математики». Но медовый месяц логики был коротким, потому что незадолго до публикации он открыл парадокс, который сегодня носит его имя. До 1910 года Рассел работал с Уайтхедом, и оба стремились справиться с противоречиями, которые вскрыл парадокс. В книге Principia mathematica (1911-1913) они глубже, чем кто-либо на сегодняшний день, погрузились в основания математики. Эта блестящая работа стала, говоря словами Гильберта, «коронацией аксиоматизации».
БЕСКОНЕЧНЫЙ ОТЕЛЬ ГИЛЬБЕРТА
Гёттингенский профессор придумал метафору, которая просто и ясно объясняет некоторые парадоксы, связанные с бесконечностью и открытые математиками одновременно с логическими парадоксами. Несмотря на то что это кажется невероятным, в отеле с бесконечным числом номеров всегда есть место для новых гостей, хотя все номера заняты. Действительно, если мы переселим гостя из первого номера во второй, того, что во втором, — в четвертый, того, что в третьем, — в шестой, и так далее, мы освободим все нечетные номера. Поскольку существует бесконечное количество нечетных чисел, есть место не только для нового постояльца, который подойдет к гостиничной стойке, но также и для бесконечного числа постояльцев. Из этой же самой ситуации мы могли бы сделать больше удивительных выводов...
— В отеле заняты все номера, и один гость уезжает. Тогда число постояльцев остается тем же самым (бесконечным).
— Если уезжают все гости, занимающие четные номера, то число постояльцев остается тем же самым (бесконечным).
— Однако если из отеля уедут все гости, занимающие номера, например с пятого и далее, то число постояльцев не будет тем же самым (в этот раз их число будет конечным).
Все это наводит нас на мысль о гибкости математической бесконечности и об осторожности, с которой нужно высказываться о ней.
Чтобы избежать парадоксов, Рассел и Уайтхед сформировали теорию типов, в которой для того, чтобы X ϵ Y было правильно составленной формулой, требуется, чтобы тип значения Y был непосредственно выше типа значений X. Таким образом, пропозиция «класс всех стульев не является стулом» — не истинная и не ложная, а попросту лишена смысла, поскольку стульями могут быть только объекты, а не классы объектов. Другими словами, ошибочно распространять свойство одного типа на другой. При применении этой хитроумной теории авторы могли утверждать, что формулировки, ведущие к парадоксу Рассела, перестают иметь смысл: R ϵ R теперь являлось неправильно составленной формулой, поскольку в ней было задействовано не больше одного типа.
Математика [...] обладает не только истиной, но и высшей красотой, холодной и суровой, подобной скульптуре.
Бертран Рассел
В Principia после устранения парадоксов Уайтхед и Рассел перешли к выведению математики из логики, поскольку в их понимании граница здесь невозможна. С технической точки зрения проект логификации математических теорем натолкнулся на многочисленные трудности. Ученым потребовалось более 379 страниц (!), чтобы доказать, что 1 + 1 = 2. Настоящее безумие. Кроме того, они были вынуждены расширить логику до крайне обобщенной теории отношений, в которую включили такие малоудовлетворительные аксиомы, созданные для данного случая, как редуктивность и бесконечность. Неуклюжая аксиома редуктивности работала как нечто вроде deus ex machina, — авторы прагматично обосновывали ее тем, чтобы работать с антиномиями и логифицировать математику: когда формула оказывается слишком сложной, предполагалось, что ее всегда можно упростить до другой, более низкого уровня.
Аксиома бесконечности была нужна для определения натуральных чисел в комплексе. Следуя за Фреге, они определили 2 как класс всех пар, 3 — как класс всех троек... Но они были вынуждены ввести аксиому (в ней утверждалось, что для любого числа существует другое, больше него), обоснование которой не могло строиться ни на одном из классов логической или математической догадки (что было бы нарушением принципа «логика или математика, основывающаяся на самой себе»), а лишь на характерной структуре мира, которому приписывалось то, что он должен включать в себя бесконечное число объектов. Если бы в мире существовало не бесконечное число вещей, а только максимальное число вещей n, Рассел и Уайтхед не смогли бы определить число n + 1, поскольку класс всех скоплений (n + 1) был бы пустым, так как не было бы n + 1 объектов в мире. Герман Вейль, ученик Гильберта, решительно отверг это: «Принципы...» испытывали веру, как Отцы Церкви.
Баланс заключался в том, что в лучшем случае Расселу и Уайтхеду удалось свести математику к виду мегалогики, раю для логиков. Логистический тезис является либо ложным (если логика не включает в себя теорию классов — то, что называется теорией множеств), либо тривиальным (если включает ее). На сегодняшний день некоторые логики пытаются возродить этот тезис, чтобы перевести математику в подходящую логику второго порядка (поскольку логики первого порядка оказалось недостаточно). Но, как говорили многие математики, логика второго порядка — это всего лишь замаскированная математика множеств. Так как в логике второго порядка допустимо говорить не только об объектах, но и о свойствах, можно определить множество понятий, типичных для теории множеств. Количественно оценивать свойства — в конечном итоге все равно что количественно оценивать множества, множество объектов, выполняющих свойство. Следовательно, речь идет о логике, лежащей в основе собственно теории множеств. Ее наибольшая выразительная сила, позволяющая охарактеризовать бесконечность или формализовать принцип индукции в одной-единственной аксиоме (вместо схемы аксиом, заключающей в себе бесконечности), — это обоюдоострое оружие. Мы находимся там же, где и были: если логика включает в себя теорию множеств, то логистический тезис истинный, но тривиальный; если логика его не включает, он радикально ложный.