Жак Шарль Франсуа Штурм
Жозеф Лиувилль.
Кроме того, он выяснил, что эти множества чисел (соответствующие коэффициентам Фурье классического выражения движения электрона) не коммутируют. Другими словами, в отличие от классических величин, квантовые в целом выполняют QP ≠ PQ. Через несколько месяцев двое коллег из Геттингена, физик Макс Борн и математик Паскуаль Йордан (1902-1980), признали, что эти множества чисел Q и Р ведут себя как математические матрицы (хотя сам Гейзенберг, по его словам, даже не знал, что такое матрица). Матричная квантовая механика выросла в саду, возделанном Гильбертом. Однако Геттинген разделился на две группы: Гильберт и его сторонники верили в большой успех, обусловленный введением матричного исчисления в физику, а их противники отмахивались от утомительной метаматематики, наполнившей атомную физику.
В рождественские каникулы 1925-1926 года Эрвин Шрё- дингер (1887-1961) осветил волновую квантовую механику, пока наслаждался обществом своей последней возлюбленной (по словам Германа Вейля, его коллеги по Цюриху). В отличие от юных физиков и математиков Геттингена, но как представителю значительной части старой гвардии, Шрёдингеру не очень импонировала квантовая механика Гейзенберга, Борна и Йордана. В поисках интуитивно более понятной теории, в которой бы применялись только классические математические инструменты, он вывел свое знаменитое волновое уравнение. Идея возникла при изучении движения электрона, как если бы речь шла о волновом движении, волновая функция Ψ которого отвечала бы за описание состояния системы. Его работа была принята с воодушевлением, потому что решить дифференциальное уравнение — чем физики занимались уже несколько веков — казалось намного проще, чем найти решение некоторых матричных уравнений.
Итак, панорама, которая была представлена физикам в начале весны 1926 года, не могла быть более парадоксальной: в их распоряжении имелись две механики, которые объясняли и прогнозировали одни и те же явления, несмотря на то что в каждой использовался абсолютно разный подход и намечалась абсолютно разная концепция микрокосмоса. Если Шрёдингер называл матричную механику «противоестественной», то Гейзенберг не сдавался и окрестил волновую механику «отталкивающей». Некоторые физики — сам Шрёдингер, Карл Эккарт (1902-1973) и Вольфганг Паули (1900-1958) — стремились прояснить формальные отношения между обеими механиками. Они пришли к выводу, что оба механизма математически эквивалентны, хотя их доказательство того, что можно построить матрицы Q и Р на основе волновых функций Ψ и наоборот, было не совсем корректным.
В признании сходства между двумя механизмами есть заслуга Гильберта. Он посмеивался над Борном и Гейзенбергом, так как, открыв матричную механику, они столкнулись с теми же трудностями, с которыми, конечно же, сталкиваются все математики, работающие с бесконечными матрицами. Когда они обратились за помощью к Гильберту, он сказал им (вспомнив свою работу над интегральными уравнениями 20-летней давности), что единственный раз он столкнулся с матрицами, когда те появлялись как побочный продукт изучения собственных значений дифференциального уравнения с граничными условиями (то есть когда интегральное уравнение преобразовывалось в систему бесконечных линейных уравнений). Он предположил, что если они найдут дифференциальное уравнение, порождающее эти матрицы, то, возможно, получат больше информации. Гейзенберг и Борн подумали, что он сказал это для того, чтобы отвязаться от них, а на самом деле не знал решения этого вопроса. Позже Гильберт шутил, указывая на то, что если бы они его тогда послушали, то открыли бы волновую механику Шрёдингера на полгода раньше него. Это был путь, по которому шли Шрёдингер, Эккарт и Паули, чтобы показать идентичность обеих теорий с математической точки зрения.
Единственная цель теоретической физики состоит в вычислении результатов, которые могут быть сравнены с опытом, и вовсе нет необходимости в утвердительном описании всего хода явлений.
Поль Дирак
Осенью 1926 года Паскуаль Йордан и британский физик Поль Адриен Морис Дирак (1902-1984) независимо друг от друга начали разрабатывать теорию преобразований, чтобы раз и навсегда объединить квантовые механики. Так как квантовые величины, введенные Гейзенбергом, определяли новый тип алгебры (для него умножение не было коммутативным), Дирак решил назвать q-числами величины, которые так себя ведут (хотя q здесь происходило не от слова quantum, а от английского queer, то есть «странный», «необычный»). Итак, абстрактная алгебра #-чисел допускает различные представления или образы (так же как одна и та же система аксиом может допускать разные модели), два из которых — матричная и волновая механика.
ДЕЛЬТА-ФУНКЦИЯ ДИРАКА
В матричной механике речь шла о поиске матрицы S, чтобы матрица W = S-1HS была диагональной. Если выделить HS в этом уравнении, получается HS = SW. И если, применяя правило умножения матриц, записать то, что означает это последнее уравнение для элементов каждой матрицы, можно получить систему бесконечных линейных уравнений (напоминает получившуюся при преобразовании интегрального уравнения):
∞
∑hpqSqn = EnSpn. [1]
q=1
С другой стороны, в волновой механике пытались решить волновое уравнение Шрёдингера Ηψ = Εψ, определяя собственные значения, являющиеся решением. Если в уравнение ввести собственную функцию ψn, назначенную собственному значению Еn , получается:
Ηψn = Εnψn. [2]
Как Гильберт, так и Дирак, переформулировав обе проблемы в таком виде, перешли к их сравнению и заметили, что [1] и [2] представляют собой схожую структуру: Гамильтониан x ΧΥΖ = Энергия x ΧΥΖ. Следовательно, вопрос, которым они задались, звучал так: какие условия следует допустить, чтобы приравнять член к члену уравнения [1] матричной механики к уравнению [2] волновой механики? Так как «интегрирование» в царстве непрерывного — это аналог «сложения» в царстве дискретного (символ ∫ происходит от последовательной деформации прописной S), они решили: то, что должно заменить (при переходе от дискретного к непрерывному) первый член в [1], будет выглядеть как ∫h(х,у)ψn(у)d(у). Значит, объединение между обеими квантовыми механиками было бы достигнуто, если бы последнее выражение совпадало с первым членом в [2] в виде:
Ηψn(x) =∫h(x,у)ψn(у)dy,
то есть если бы любой оператор Гамильтона мог быть записан как интегральный оператор.
Но это было невозможно даже для такого простого оператора, как тождество (определяемое как Ηψ = ψ для любой волновой функции). Дирак не спасовал перед трудностями и, чтобы преодолеть их, прибегнул к функции δ. Эта своеобразная функция определена δ(z)=0 для любого z≠0[3] и, как ни парадоксально, ∫δ(z)dz= 1 [4]. Как представить себе функцию, которая равна 0 во всех точках, кроме одной, и интегрирует 1?
Итак, приняв эту функцию и рассматривая h(x,y)=δ(x-y) как ядро вышеприведенного интегрального уравнения, можно выразить тождество, например, как интегральный оператор, просто применив магические свойства δ:
[3] [4]
Ηψ(x)=∫h(х,у)ψ(у)dy=∫δ(х-у)ψ(у)dy= ψ(x)∫δ(x-y)dy=ψ(x)·1=ψ(x).