Рекордсменами среди глазастых животных являются гигантские кальмары: глазное яблоко — 27 сантиметров в диаметре, зрачок — 9. А нужны им такие большие глаза… конечно, чтобы лучше видеть, но не Красную Шапочку, то есть добычу, а своих недругов — кашалотов. На 600-метровой глубине кашалот, двигаясь сквозь облака планктона, вызывает свечение микроорганизмов, которое и улавливает чуткий взгляд кальмара. Кальмар различает темный силуэт кашалота на светящемся фоне за 120 метров. Скрыться он не успеет, но сможет приготовиться к встрече с врагом во всеоружии. Крупнее, чем у кальмаров, глаза были только у вымерших морских ящеров ихтиозавров — до 35 сантиметров в диаметре. Наверное, для тех же целей: избегать своих соперников — плиозавров. Вполне возможно, что глубоководная охота и, следовательно, необходимость подогрева глаз вызвали развитие теплокровности у юрских и меловых гигантских морских ящеров — плезиозавров, ихтиозавров и мозазавров. Во всяком случае, геохимик Орельен Бернар из Лионского университета и его группа обнаружили, что кости этих животных по изотопному составу кислорода очень отличаются от рыбьих, и оценили температуру тела ящеров в 35–39 °C в 12-градусной воде.
Убивающая взглядом
Как только органы зрения появились, их можно было приспосабливать к различным условиям, уменьшая или увеличивая размеры глаза, разнообразя строение сетчатки или смещая глаза в разные части головы, если она есть, для создания панорамного, стерео- или телескопического зрения. У кубомедуз, например, нет ни головы, ни мозгов, а камерные глаза с хрусталиком и сетчаткой имеются. Личинки этих медуз с помощью глаз и передвигаются. Это совсем не сложно: светочувствительные клетки происходят от жгутиковых предшественников, основной задачей которых было именно движение.
Древние греки придумали множество мифических существ, казалось бы обладавших совершенно неправдоподобными способностями. Медуза Горгона убивала взглядом, а у девятиголовой змееподобной Лернейской гидры заново отрастали отрубленные головы. В эпоху Просвещения ученые ввели традицию присваивать имена мифических созданий реальным организмам, в чем-то напоминающим своих фантастических тезок. У маленькой пресноводной гидры действительно заново отрастают многочисленные щупальца, а некоторые ее морские родственники — медузы — способны убивать людей. Яды воздействуют на нервную и кровеносную системы, а одно из самых опасных животных — тихоокеанская кубомедуза Chironex fleckeri — насмерть поразила более 200 человек. Люди, пережившие ее нападение, утверждают, что в момент укуса чувствовали будто тысячи раскаленных гвоздей вонзаются в тело.
Эти «тысячи гвоздей» являются стрекательными клетками, которые есть в щупальцах и гидры, и медузы, и коралла, потому всех этих животных называют стрекающими (книдарии). Каждая такая клетка содержит пузырек с ядом и спирально свернутую трубочку с похожим на гарпун наконечником. Если чувствительные клетки гидры ощущают приближение возможной добычи, трубочка мгновенно — всего за 700 наносекунд — раскручивается и выстреливает с такой силой, что пробивает даже панцирь рака. И яд поступает в ткани обреченной жертвы.
Лишь недавно зоолог Дэвид Плачецки из Калифорнийского университета (Дэвис) смог раскрыть некоторые секреты стрекательных клеток. Оказалось, что их эластичная оболочка состоит из белка, близкого по составу к тому белку, который образует паутину. А каждая чувствительная клетка иннервирует батарею из примерно 30 стрекательных. Хотя глаз, в нашем понимании, у гидры нет, она, когда тень жертвы падает на нее, разряжает свои ядовитые клетки, причем лучше попадает в цель в условиях плохой освещенности.
В таких клетках гидры и медузы содержатся светочувствительные рецепторы и белки, контролирующие восприимчивость к свету. Еще в них есть регуляторные гены, которые являются предковыми для генного комплекса, отвечающего у позвоночных за формирование не только органов зрения, но и слуха. Выходит, что наши способности видеть и слышать имеют сходство на генном уровне. А медузы, получается, убивают взглядом, поскольку стрекательные клетки одновременно служат у них глазами.
Магический кристалл
Всем этим возможности глаз не исчерпываются. Так, вблизи глубоководных черных курильщиков, извергающих 350-градусные гейзеры, обитают многочисленные креветки и крабы, которые, чтобы не заблудиться в холодной безжизненной мгле, со всех сторон окружающей теплые оазисы, приспособились видеть инфракрасное излучение (700–1000 нанометров), исходящее от горячих растворов. Но не только: нейробиолог Стивен Чемберлен из Сиракузского университета в штате Нью-Йорк обнаружил в глазах этих ракообразных пигменты, восприимчивые к зеленому свету. На такую глубину световые волны средней длины не проникают. Значит, источник зеленого свечения нужно искать в курильщиках. Геофизики его открыли: мириады пузырьков газа, выделяющиеся при извержении курильщиков, взрываются и излучают зеленый свет. Это явление называется сонолюминесценция.
Пресноводная гидра… убивает взглядом: на кончиках ее щупалец стрекательные клетки сопряжены со светочувствительными (темные пятна на периферии диска). Они мгновенно реагируют на любые изменения освещенности, впрыскивая яд жертве. Диаметр диска 200 мкм (предоставлено Дэвидом Плачецки)
На суше инфракрасный свет видят гремучие, или ямкоголовые, змеи. На голове у такой змеи есть пара ямок, которые устроены почти так же, как камерные глаза: не хватает лишь хрусталика. Тепло, исходящее от тела мыши, попадает в ямку и возбуждает чувствительные клетки, способные различать разницу температур в тысячную долю градуса (Кельвина). Мозг обрабатывает полученную информацию, сопоставляет ее с той, что поступила через обычные органы зрения, и складывает в достаточно понятное изображение мыши. Не исключено, что дополнительный прибор видения понадобился змеям для улучшения зрения. Ведь их «прозрачная роговица» является сросшимися и не вполне прозрачными веками. Они пронизаны густой кровеносной сетью. Герпетолог Кевин ванн Дорн из канадского Университета Ватерлоо выяснил, что относительно четкую картинку змея видит в моменты единовременного сокращения сосудов, длящегося около 100 секунд.
Лучи света различаются не только по спектру: проходя сквозь атмосферу, отражаясь от гладкой водной поверхности или глянцевой листвы, они поляризуются. Если в обычном пучке света электромагнитные волны колеблются в любых плоскостях поля, перпендикулярных его распространению, то в поляризованном — большинство волн колеблется в одной плоскости. И многие насекомые, и птицы приспособились видеть поляризованный свет, чтобы находить его источник: днем — солнце, ночью — луну. Конечно, в ясную погоду такой необходимости нет, но, когда небо тучами покрыто, определить, где находится светило, непросто. В море главная плоскость поляризации лежит параллельно поверхности, и хищники — рыбы и головоногие моллюски — научились извлекать из этого выгоду: если зрачок и расположение наиболее чувствительных участков сетчатки — вертикальные (как у рыб) или, наоборот, горизонтальные (как у осьминогов и каракатиц), то разрешающая способность глаза увеличивается почти в два раза. Используя разницу в поляризации различных световых потоков, в воде можно разглядеть прозрачные объекты, а ведь многие морские организмы (медузы, гребневики, кальмары), чтобы слиться с окружающим фоном, используют прозрачный камуфляж. А кальмары и каракатицы имеют окраску, различимую только для тех, кто видит поляризованный свет.
Меловой глубоководный ихтиозавр Leninia, открытый палеонтологом Максимом Архангельским в Ульяновской области, был одним из рекордсменов по размеру глаз (диаметр зрачка 7,7 сантиметра). 120 миллионов лет (предоставлено Паскалем Годфруа)