Попытку такого объяснения сделал друг Ньютона — английский астроном Эдмунд Галлей (1656–1742). Галлей (по его словам) доказал, что если движения планет подчиняются третьему закону Кеплера, то сила притяжения их Солнцем должна меняться обратно пропорционально квадратам расстояния их от Солнца. Галлею, однако, не удалось определить форму планетных орбит.
Посетив Ньютона, Галлей сообщил ему об этих расчетах. Тогда Ньютон поделился с ним открытием закона всемирного тяготения. Галлей стал настаивать, чтобы Ньютон опубликовал его.
Только через год с большой неохотой Ньютон представил в Лондонское Королевское общество рукопись «О движении» с изложением основ механики. При этом он просил не публиковать его работу, а только зарегистрировать в протоколах общества для защиты приоритета ее автора. Наконец в 1686 году он прислал в общество свой замечательный труд — «Математические начала натуральной философии».
В архивах Лондонского Королевского общества есть запись, что в этом труде Ньютона «дается математическое доказательство гипотезы Коперника в том виде, как она была предложена Кеплером, и все небесные явления объясняются на основании единственного предположения о тяготении к центру Солнца обратно пропорционально квадрату расстояния».
«Начала» Ньютона были изданы Лондонским Королевским обществом на средства Галлея в 1687 году.
Исходя из обратной пропорциональности силы тяготения квадрату расстояния, Ньютон математически доказал, что под действием тяготения планеты должны двигаться по эллиптическим орбитам и что радиус-вектор должен в равные времена описывать равные площади — законы, найденные Кеплером из наблюдений движения планет.
Закон всемирного тяготения оказался применимым к объяснению многих явлений, остававшихся непонятными до того времени.
Например, движение планет, подчиняясь в общем законам Кеплера, все-таки немного отступает от них. Такие «неравенства» в движении планет представляли загадку для астрономов.
Ньютон объяснил это явление «возмущениями», которые производит тяготение планет друг к другу.
Наибольшие «неравенства» наблюдаются в движении Луны, возмущаемом могучим притяжением Солнца. Одно из них происходит, например, вследствие изменения формы лунной орбиты.
Когда Луна и Солнце находятся в одной стороне от Земли, то Солнце оттягивает ее от Земли. Через пятнадцать дней уже Земля окажется между ними; тогда она оттягивается Солнцем от Луны. Вследствие этого постепенно укорачивается длинная и удлиняется короткая оси лунной орбиты.
Подобным образом объясняются и «неравенства» в движениях планет, производимые их взаимным притяжением.
Приливы и отливы также оставались загадочным явлением до открытия всемирного тяготения.
Ньютон объяснил морские приливы притяжением океанических вод Луной. Луна действует на каждую частицу Земли. Частицы воды, находящиеся прямо под Луной, ближе к ней, чем центр Земли, на величину земного радиуса. В противоположной точке земной поверхности они настолько же дальше от нее по сравнению с центром Земли.
Притяжение Луны сообщает всем точкам Земли ускорение, обратно пропорциональное квадратам расстояний. Ускорение частиц под Луной больше, чем ускорение центра Земли. Наоборот, в противоположной точке оно настолько же меньше его.
Поэтому прямо под Луной и в противоположной точке земной поверхности поднимается бугор прилива.
Разгадка причины приливов и отливов была не меньшим торжеством закона всемирного тяготения, чем и объяснение движения планет.
Ньютон считал частицы материи центрами силы притяжения, взаимодействующими между собой на расстоянии без посредства каких-либо материальных частиц. Но он не стремился раскрыть, что такое тяготение. Он не утверждал, например, что тяготение — свойство материи.
«Я отнюдь не утверждаю, — писал он, — что тяготение существенно для тел. Под врожденной (присущей телам. — Ф. Б.) силой я разумею единственно только силу инерции. Она неизменна. Тяжесть при удалении от Земли уменьшается».
Всемирное тяготение — это принцип, выведенный из наблюдений движения планет: планеты движутся так, как будто Солнце притягивает их с силой, обратно пропорциональной квадратам расстояний.
Этот принцип не может быть отвергнут, потому что он выведен из наблюдений.
Гипотезой можно считать лишь утверждение, что каждая частица одного тела тяготеет к каждой частице другого и потому сила тяготения между двумя телами прямо пропорциональна их массам. Но все расчеты, сделанные на основе этого предположения, оправдываются наблюдениями.
Поэтому, не зная, в чем заключается причина тяготения тел друг к другу, астрономы признали, что оно действительно существует.
Целью «Начал» было математическое объяснение движения небесных тел, исходя из принципа всемирного тяготения. Но Ньютон не ограничился этим. Он привел в стройную систему механические познания того времени и внес ясность в понятия о силе и массе. Поэтому Ньютон считается основоположником современной механики.
Механика Ньютона
Ньютон впервые ввел в механику понятие о массе. До него обычно говорили о ней как о весе тела. Вес тела определял количество вещества в нем.
Но, открыв закон всемирного тяготения, Ньютон уже знал, что масса и вес — не одно и то же.
С древнейших времен люди измеряли массу тела весом, как количество материи.
Ньютон поэтому и дал такое определение массы: «Количество материи (масса) есть мера таковой, устанавливаемая пропорционально плотности и объему», поясняя далее, что опытным путем масса определяется по весу тела, «ибо она пропорциональна весу, что мною найдено опытами над маятниками…»
Определение массы Ньютоном согласовалось с представлением атомистов о строении тел: чем больше в определенном объеме атомов, тем больше и масса тела.
Но вес тела меняется в зависимости от расстояния его до центра тяготения — он не может быть мерой массы. Как же измерить массу независимо от веса тела?
И вот Ньютон ввел понятие об измерении массы ее инерцией. «Врожденная сила[15] материи есть присущая ей способность сопротивления, по которой всякое отдельно взятое тело, поскольку оно предоставлено самому себе, удерживает свое состояние покоя или равномерного прямолинейного движения. Эта сила пропорциональна массе».
Об инерции тела дает ясное понятие следующий опыт.
Допустим, что между двумя легкоподвижными, маленькими одинаковыми тележками зажата спиральная пружина. Тележки связаны ниткой, не позволяющей пружине расправиться. Они стоят на рельсах, вдоль которых уложена длинная линейка с делениями. Разрезав острыми ножницами нитку, мы освободим пружину.
Быстро расправившись, пружина толкнет тележки, и они откатятся на одинаковое расстояние. Но если одну из тележек нагрузить свинцовой дробью так, чтобы она вместе с грузом весила вдвое больше, чем другая, то нагруженная тележка откатится на расстояние, вдвое меньшее, чем пустая.
И где бы мы ни сделали этот опыт — на полюсе или на экваторе, — тележки откатятся везде на одно и то же расстояние. Даже если бы мы произвели его на Луне, где тяжесть тележек и груза уменьшилась бы почти в шесть раз, тележки под действием толчка распрямляющейся пружины откатились бы на такое же расстояние, как и на поверхности Земли.
Впервые Ньютон ввел в механику ясное понятие и о силах, не касаясь, однако, их природы. По Ньютону, сила есть причина движения. Она сообщает ускорение телу.
Основные законы механики Ньютон выразил в такой форме:
1. Всякое тело продолжает удерживаться в своем состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние.
2. Изменение количества движения пропорционально приложенной движущей силе и происходит по направлению той прямой, по которой эта сила действует.
3. Действию всегда есть равное и противоположное противодействие; иначе — взаимодействия двух тел друг на друга между собой равны и направлены в противоположные стороны.