Литмир - Электронная Библиотека
A
A

Примечание. Во всех разновидностях, кроме указанных в таблице изоморфных примесей, постоянно присутствуют Si — 0,1%; Al — сл.; Mg — 0,03; Fe — сл. — 0,001%

Оптический флюорит - i_041.png

Рис. 21. Спектры пропускания природного флюорита (1) и выращенных из него искусственных кристаллов (2—4) в ИК-области

Практика показывает, что для получения высококачественных оптических монокристаллов оптического флюорита наиболее подходящим является природный флюорит с низким (порядка 0,003%) содержанием редких земель, представленных преимущественно Dy3+, в меньшей мере Sm3+ и Yb2+, и других элементов-примесей, нелюминесцирующий или слабо люминесцирующий, устойчивый к действию ионизирующего излучения.

Такой флюорит содержат многие месторождения гидротермального типа, сформировавшиеся в относительно низкотемпературных условиях, в частности ныне выработанные месторождения Средней Азии [Смольянинов. 1935]. Весьма перспективен флюорит Уральско-Новоземельской провинции, он удобен и технологически [Юшкин и др., 1982], так как высокая чистота его мономинеральных скоплений, многие из которых являются деформированными монокристаллами (фото 12, см. вкл.), позволяет исключать ряд операций по подготовке исходного сырья, вплоть до химической очистки. Пропускание искусственных кристаллов значительно выше, чем исходного сырья (рис. 21).

При существующей расплавной технологии выращивание кристаллов флюорита методом Шамовского—Стокбаргера—Степанова в наиболее полной форме оправдывается принцип наследования: полученные кристаллы наследуют состав и многие свойства исходного материала. Варьируя технологическими особенностями процесса, можно изменить лишь те свойства, которые не зависят или мало зависят от состава. Поэтому выбору исходного материала и предварительному изучению его физико-химических особенностей должно уделяться особое внимание.

Получение кристаллов с заданным химическим составом

Все главные физические свойства, определяющие особую ценность оптического флюорита, связаны прямо или косвенно с особенностями его состава, поэтому получение кристаллов с заданным химическим составом — один из важнейших рычагов управления их свойствами.

Опираясь на принцип наследования, можно получить кристаллы с определенным составом и содержанием примесей, используя в качестве исходного материала соответствующие химические разности природного флюорита. Этот, так сказать, пассивный путь — наиболее легкий и эффективный, так как не требует никаких специальных приемов, дополнительных операций и затрат. Было бы подходящее исходное сырье с точно установленными физико-химическими параметрами. Но далеко не всегда имеется такое сырье, поэтому приходится выбирать более тяжелый, но надежный активный путь: вводить в получаемые кристаллы нужные примеси в необходимых количествах, т. е. легировать кристаллы. Однако последние могут содержать какое-то количество своих примесей, и можно ошибиться в дозировке. Поэтому при необходимости точной дозировки легирование производится по очищенной основе.

Получение кристаллов с заданным составом складывается, таким образом, из двух этапов: выращивания особо чистых кристаллов флюорита и получения на их основе кристаллов с введенными примесями (легирование кристаллов).

Получение особо чистых кристаллов флюорита. Кристаллы флюорита высокой степени чистоты можно получить многими методами [Методы..., 1969], в том числе любым методом направленной кристаллизации (методами Наккена—Кирополуса, Чохральского), рассмотренными выше. Особенно хорошие результаты дает метод зонной плавки, заключающейся в последовательном переплавлении и перекристаллизации блока шихты или флюоритового бруска. Перекристаллизацию можно проводить неоднократно; в результате все примеси будут «загнаны» в один конец слитка.

Эффективная очистка от примесей может проводиться и главным «флюоритовым» методом — методом Шамовского—Стокбаргера—Степанова [Guggenheim, 1963], но организованным так, чтобы высота расплава при перемещении границы кристалл—расплав все время оставалась постоянной, обеспечивая стабильность процесса кристаллизации и накопления примесей в остаточном расплаве. Этим условиям отвечает метод горизонтальной направленной кристаллизации в контейнере-лодочке (рис. 22). Рост кристалла происходит на затравку, установленную в «носике» лодочки, примеси скапливаются на конце кристалла, противоположном затравке. Для получения кристаллов этим методом созданы установки типа «Сапфир».

Оптический флюорит - i_042.png

Рис. 22. Схема горизонтальной направленной кристаллизации

1 — затравка; 2 — кристалл; 3 — расплав; 4 — контейнер-лодочка; 5 — нагреватель

Легирование кристаллов флюорита. Главным компонентом шихты для выращивания легированных кристаллов является либо особо чистый природный флюорит, либо флюорит, очищенный одним из охарактеризованных выше методов перекристаллизации. К шихте примешиваются в определенном количестве соединения того элемента, который вводится в кристаллы флюорита. Чаще всего возникает необходимость активирования кристаллов редкоземельными элементами, методика которого достаточно хорошо разработана [Воронько и др., 1965; Шамовский и др., 1970; Guggenheim, 1961]. Особенностью методики является то, что элементы-примеси, которые существуют в стабильных соединениях в более высоковалентных состояниях, а в кристалл флюорита должны войти в форме соединения низшей валентности, в процессе кристаллизации восстанавливаются углеродом (например, от Dy3+ в DyF3 до Dy2+ в CaF2). Углерод добавляется в шихту в виде спектрально чистого графита вместе с активатором (TRF3) и раскислителем (PbF2 или CdF2). Также достаточно просты методики получения и других смешанных кристаллов, например CaF2—SrF2.

Получение кристаллов с определенными свойствами

Управление основными свойствами кристаллов осуществляется, как мы неоднократно подчеркивали, через состав, но многие свойства можно изменять в ту или иную сторону. Здесь мы расскажем о некоторых приемах обеспечения определенных физических свойств искусственных кристаллов флюорита.

Моноблочность и однородность. При использовании монокристаллов флюорита в нелинейной оптике, в частности для изготовления активных элементов лазеров, в качестве одного из основных требований выдвигается моноблочность кристаллов и отсутствие в них даже малоугловых границ [Никогосян, 1977].

По существующей промышленной технологии, применяя самые «мягкие» режимы роста и отжига, можно получить монокристаллы флюорита относительно небольших размеров с разориентировкой блоков мозаики в 10—20 угловых минут. Они вполне удовлетворяют требованиям квантовой электроники, но их получение — скорее результат случая, чем решения поставленной технологической задачи. Моноблочные кристаллы выискивают в партиях обычной продукции.

Как показывает теоретико-экспериментальный анализ причин возникновения микро- и макронесовершенств оптических кристаллов [Мильвидский, Освенский, 1975], метод Шамовского—Стокбаргера—Степанова мало перспективен для получения моноблочных и малодислокационных кристаллов. Возникновению несовершенств здесь способствует много факторов: отсутствие совершенной затравки, содержащей своего рода код для правильного встраивания частиц, жесткая форма тигля, взаимодействие расплава со стенками тигля, большие температурные градиенты в кристаллизующемся блоке и т. п.

Добиться почти полной моноблочности можно в том случае, если применить к выращиванию кристаллов флюорита метод Чохральского, особенно его вариант регулируемого формообразования, известный как метод Степанова. При этом необходимо использование бездефектных затравок и проведение процесса кристаллизации в условиях малых температурных градиентов.

24
{"b":"576009","o":1}