Литмир - Электронная Библиотека
Содержание  
A
A

Кант видел противоречивость бесконечности. Но, будучи метафизиком, он был убежден в том, что любые противоречия присущи только человеку, человеческому сознанию, а в природе их нет. Поэтому противоречивость бесконечности служила для него доказательством ее субъективного характера.

В подтверждение своей точки зрения Кант приводил «антиномии», весьма похожие на апории Зенона.

Он пытался доказать, что применение наших представлений о бесконечности к окружающей природе неизбежно приводит к неразрешимым противоречиям.

— Предположим, — говорил, например, Кант, — что у мира не было начала во времени. Но если так, то до любого, в том числе и до настоящего, момента, протекла вечность. Однако бесконечность неисчерпаема и бесконечный ряд не может быть завершен. А следовательно, настоящий момент никогда не мог бы наступить. Но так как он все же наступил, следовательно, мир конечен во времени.

Однако это были чисто абстрактные логические рассуждения, основанные на ньютоновском представлении об абсолютном пространстве и абсолютном времени.

Гораздо более глубокие мысли о пространстве и времени высказывал впоследствии Гегель (1770–1831).

Он, в какой-то мере предвосхищая будущую физику, критиковал Ньютона, считавшего пространство пустым вместилищем небесных тел, а время некоей абсолютной, зависящей только от самого себя длительностью, и отрывавшего, таким образом, пространство и время от материи.

Не принимал Гегель и точку зрения Канта.

«Это уже слишком большая нежность по отношению к миру, — писал он, — удалить из него противоречие, перенести, напротив, это противоречие в дух, в разум и оставить его там неразрешенным».

Однако и сам Гегель выводил бесконечность мира из бесконечности мирового духовного процесса, — ведь мир для Гегеля представлялся инобытием идеи.

В то же время любопытно отметить, что эту бесконечность Гегель понимал не просто как бесконечное повторение одного и того же. Он считал, что с изменением масштабов неизбежно должны возникать и новые качества.

И Гегель, и Кант, и Декарт понимали бесконечность как отсутствие границ, И главная проблема, которая их занимала, состояла в том, как оправдать использование идеи бесконечности, если на практике мы всегда имеем дело с конечными величинами.

Проблема бесконечного издавна привлекала внимание не только философов и математиков, но также богословов и теологов, утверждавших, что высшая истинная бесконечность — это бесконечность бога.

— Именно в бесконечности — высшее совершенство и высшее благо, — утверждали они. — Конечность говорит о несовершенстве и потому относится к материальному миру.

Весна 1960 года. Маленький французский городок Ройямон, недалеко от Парижа. Здесь в тихом и цветущем местечке, словно самой природой предназначенном для отвлеченных размышлений, проходила международная конференция философов. На нее съехались представители самых различных школ и направлений — материалисты, идеалисты, идеологи религии.

Как-то в перерыве между заседаниями один из советских философов разговорился с богословом-доминиканцем, одним из теоретиков современного католицизма.

— Как вы, теологи, решаете в настоящее время вопрос о конечности или бесконечности мира? Ведь, если не ошибаюсь, в свое время религия категорически отводила бесконечность исключительно для бога?

— Да, таковы были взгляды святого Августина, — подтвердил доминиканец. — Но Фома Аквинский, чье учение признано теперь единственной истинной философией католической церкви, исходя из Аристотеля, учил, что материя также бесконечна, но только в ином смысле, а именно в смысле формы, а не бытия, которое эту форму определяет и является богом.

— Не значит ли это, — спросил философ, — что вы оставляете себе возможность, судя по обстоятельствам, пользоваться то одной, то другой стороной этого учения?

Вопрос был достаточно прямой, и доминиканец ухмыльнулся:

— Понимаю… Вас интересует, как мы относимся к гипотезам науки?.. Мы признаем право науки исследовать материальный мир. И вполне принимаем ту картину Вселенной, которую она нам рисует… Но, помимо мира материального, есть другой мир, мир высший, недоступный науке, бог, сотворивший материю и вдохнувший в псе жизнь.

И добавил, как бы поясняя:

— Великой драме, которую мы называем космосом, предшествовал творческий проект: геометрия Вселенной. Бог повсюду занимается геометрией, и гений человека состоит в том, что он фиксирует ее буквами, фигурами и уравнениями.

Но философ был хорошо знаком, с этой тактикой «мирного сосуществования» и «разделения сфер», пропагандируемой современными богословами. Его интересовало другое.

— А как же все-таки с конечностью и бесконечностью? — повторил он свой вопрос.

— Что бы там ученые ни утверждали — конечен мир или бесконечен, религиозное познание этим не затрагивается. Если Вселенная бесконечна — в этом воплощено величие господа, если же она конечна — то и в том воля и мудрость божия…

— А если Вселенная все-таки бесконечна, способна ли наука познать эту бесконечность?

— Бесконечность нельзя охватить обычными человеческими понятиями. Для этого необходим сверхъестественный носитель мудрости — господь бог…

На том и закончилась эта беседа, показавшая еще раз, что современные защитники религии стараются обратить в свою пользу любые данные науки, любые се выводы и достижения в познании окружающей природы. И делают это довольно искусно. Хотя, разумеется, это всего лишь ловкий тактический прием. Существо религии от этого не изменилось: как и прежде, все от бога. Но в наш век космических полетов и атомной энергии на одной слепой вере в сверхъестественное далеко не уедешь. Вот современные богословы и стараются сделать религию более приемлемой для современного человека, придать ей видимость научной обоснованности. И для этой цели они не только ловко жонглируют научными данными, но идут и на прямую фальсификацию.

Странный мир множеств

Только разработка понятия «предела» помогла уяснить природу бесконечно малых величин. Но само это понятие получило строгое обоснование лишь в теории бесконечных множеств, создание которой стало одним из выдающихся достижений математики XIX столетия. Именно в этот период началось изучение множеств, состоящих из бесконечно большого числа элементов.

Пожалуй, самый первый шаг был сделай еще Галилео Галилеем. Великим флорентийский ученый обнаружил, что можно установить так называемое взаимно однозначное соответствие между натуральными числами и их квадратами. Для этого достаточно соотнести каждому целому числу результат его возведения во вторую степень. Таким образом, получается, что множество квадратов натуральных чисел так же велико, как и множество всех натуральных чисел. Галилей обратил внимание на довольно неожиданное обстоятельство: из этого следовало, что бесконечное множество может быть равно своему подмножеству — ведь далеко не каждое целое число является квадратом какого-либо другого целого числа.

А это, в свою очередь, означало, что аксиома «часть меньше целого» может оказаться недействительной, когда речь идет о бесконечности. Замечание великого физика лишь усилило недоверие к бесконечным множествам. Кстати, это недоверие разделял и сам Галилей, а много позже, в 1833 году, математик Коши, один из создателей теории пределов, цитировал его высказывания для подтверждения подобной же точки зрения.

И лишь в середине XIX столетия чешский математик Бернард Больцано (1781–1848) пришел к обоснованному выводу о том, что отличие конечных множеств от бесконечных в том именно и состоит, что бесконечное множество равномощно своей собственной части.

Труд Больцано «Парадоксы бесконечного» вышел в свет в 1855 году, спустя три года после смерти ученого. Правда, это было скорее философское, нежели математическое исследование. Попытки Больцано образовать бесконечные множества все более высоких мощностей не увенчались успехом.

Решить эту задачу удалось только выдающемуся немецкому математику Георгу Кантору (1845–1918).

12
{"b":"573685","o":1}