Формулу С - А + V = 2 обычно называют формулой Эйлера — Декарта, поскольку, хотя официально ее обнародовал Эйлер, Декарт (1596-1650) открыл ее в 1649 году. Точнее, он сделал другое открытие, подразумевавшее результат Эйлера, но не успел опубликовать его при жизни.
РИС. 1
СВОЙСТВА МНОГОГРАННИКА
Рассмотрим произвольный выпуклый многогранник (хотя на самом деле формула Эйлера работает для любого многогранника, который можно трансформировать в выпуклый, главное, чтобы он состоял из целого блока, а не из двух многогранников, соединенных в одной точке или с общим отрезком, и не имел дыр). Назовем вершины, ребра и грани многогранника с вышеуказанными характеристиками V, А и C. Как мы уже сказали, Эйлер обнаружил, что
C - A + V = 2.
РИС. 2
РИС. 3
РИС. 4
Эта удивительная взаимосвязь прослеживается всегда — подчеркнем это еще раз, — какой бы ни была форма многогранника, каким бы сложным ни было его изображение и какими бы косыми ни были его грани (за исключением звездчатых многогранников, грани которых пересекаются между собой). Наблюдение Эйлера совсем не очевидно, но его можно легко проверить как на примере симметричных и гармоничных Платоновых тел (рисунок 1 на предыдущей странице), так и на примере любого развернутого многогранника (рисунок 2). Эта числовая формула не зависит от геометрических характеристик фигуры и от формы многогранника. Она справедлива для любого выпуклого многогранника без дыр. Сегодня на элементарном уровне рассматриваются уже не простые многогранники, а поверхности, которые обозначаются буквой S, с дырами и без, а число Χ(S) = С - A + V называют характеристикой S. Для поверхностей, гомеоморфных сфере, таких как многогранники, эта характеристика равна 2. Для тора (рисунок 3) или для бутылки Клейна (рисунок 4) и других гомеоморфных им поверхностей эта характеристика будет равна 0. Для трехмерных поверхностей рода g — где g соответствует количеству дыр в S — характеристика будет равна:
Χ(S) = C - A + V = 2 - 2g.
ГОМЕОМОРФИЗМ
Этот термин может показаться странным, но его значение (от греч. "гомой- ос" — "похожий" и "морфе" — "форма") хорошо известно всем математикам. Он описывает способность тела получиться из чего-то другого (и наоборот) в результате непрерывной неразрушающей деформации. Например, куб на рисунке гомеоморфен сфере.
Математики, особенно специалисты по топологии, называют тела, переходящие одно в другое в результате простой деформации, не ломаясь, гомеоморфными. Классическим примером гомеоморфных, или топологически эквивалентных, фигур являются кружка и тор, потому что могут циклично переходить друг в друга.
Кружка и тор гомеоморфны по невероятной геометрической причине: у них всего одно отверстие. Количество отверстий в поверхности считается топологическим инвариантом, поскольку не меняется в результате перехода.
Она называется характеристикой Эйлера — Пуанкаре. Это выражение стало очень популярным в математике и используется в таких абстрактных дисциплинах, как гомологическая алгебра. Уравнение
C - A + V = 2 - 2g
было сформулировано в 1813 году Симоном Антуаном Люи- лье (1750-1840), но этим открытием, как мы видели, он обязан Эйлеру.
ВОЗВРАЩЕНИЕ К ТЕОРИИ ЧИСЕЛ:
ПРОБЛЕМА ГОЛЬДБАХА
Переписка между Эйлером и Гольдбахом не прервалась после переезда первого в Берлин. В письме 7 июня 1742 года Гольдбах предположил, что каждое четное целое число является суммой двух целых чисел р и q, которые или были равны 1, или были нечетными простыми числами. Обмен мнениями продолжался, пока Эйлер не нашел окончательную формулировку этой идеи, которая, возможно, является самой известной задачей в истории после теоремы Ферма:
Каждое четное целое число больше 2 может быть представлено как сумма двух простых чисел.
Это и есть проблема Гольдбаха, названная так в честь ее автора, хотя сам он сформулировал ее по-другому. Ее также называют сильной проблемой Гольдбаха — в отличие от слабой проблемы, более простой с математической точки зрения, которая звучит так:
Каждое нечетное число больше 7 может быть представлено как сумма трех нечетных простых чисел.
Сильная проблема включает в себя слабую, но не наоборот.
Доказательство слабой проблемы довольно простое: если п — нечетное число и больше 7, то n = p + 3 > 7, следовательно р четное и р > 7-3 = 4. Если сильная гипотеза Гольдбаха подтверждается, то р — сумма двух простых чисел. Между тем n = р + 3, где р равно сумме двух нечетных простых чисел. Следовательно, п является суммой трех нечетных чисел, что и требовалось доказать. Сильная проблема подразумевает слабую. Сильная проблема Гольдбаха подтверждается для любого четного числа, иногда несколькими способами:
4-2 + 2
6-3 + 3
8-3 + 5
10-3+7-5+5
12-5 + 7
14-3+11-7 + 7
16-3+13-5+11
18-5+13-7 + 11
20-3+17-7 + 13.
В интернете есть сайты, на которых можно найти суммы Гольдбаха, доказывающие, что его гипотеза подтверждается всегда, независимо от выбранного числа. Например, для 1000:
1000 -179 + 821 =191 +809 = 431 +569- = 19 +1019.
Аналогично можно выбрать сумму с нечетными простыми числами, из которых одно отрицательное, чтобы убедиться, что проблема Гольдбаха подходит не только для простых натуральных чисел. В сети можно даже найти вычислительные программы, которые выдают суммы Гольдбаха для любого рационального числа, но с условием, что оно не очень большое. Встречаются такие суммы, члены которых сильно отличаются по величине, например:
389965026819938 = 5569 + 389965026814369.
КРИСТИАН ГОЛЬДБАХ
Гольдбах родился в Пруссии, но большую часть своей жизни провел в России, где искал новые таланты для Петербургской академии и работал в ней же секретарем. Он дружил с Лейбницем, Абрахамом де Муавром, Николаем Бернулли (а также с другими членами этой выдающейся семьи) и Эйлером, чью кандидатуру он усиленно продвигал и в переезде которого в Россию сыграл решающую роль. Он даже стал учителем царевича Петра II и занимал высокие посты в министерстве иностранных дел, где работал криптографом. Гольдбах занимался разными областями науки и добился хороших результатов в изучении числовых последовательностей, в особенности благодаря сотрудничеству с Эйлером. Личность последнего, видимо, стимулировала Гольдбаха в работе. Например, не все знают, что именно Гольдбах, будучи не в состоянии решить Базельскую задачу самостоятельно, привлек к ней Эйлера, который впоследствии прославился найденным решением. Переписка Эйлера и Гольдбаха, необыкновенно обширная и полная математических рассуждений, насчитывает почти 200 писем. Об уважении, которое Эйлер питал к Гольдбаху, свидетельствует хотя бы тот факт, что он выбрал коллегу крестным отцом своего первенца.