Редактор попросил Пуанкаре как-либо объяснить этот пробел в доказательстве. Но, когда Пуанкаре попытался обосновать этот шаг, он осознал, что допустил серьезную ошибку. Пытаясь ограничить ущерб для своей репутации, он написал председателю комитета по присуждению премии Гёсте Миттаг-Леффлеру:
Последствия этой ошибки серьезнее, чем я предполагал вначале. Не скрою от Вас, насколько огорчило меня это открытие […]. Не знаю, признаете ли Вы оставшиеся результаты достойными той высокой награды, которую Вы им присудили. (Во всяком случае, я могу лишь признаться Вам как верному другу в своем замешательстве.) Я напишу Вам подробнее, когда буду яснее понимать положение.
Миттаг-Леффлер решил известить других членов жюри:
Работа Пуанкаре обладает такой редкой глубиной и творческой силой, что она несомненно откроет новую эпоху в анализе и его приложениях к астрономии. Однако разъяснения необходимо значительно расширить, и в данный момент я прошу многоуважаемого автора просветить меня по некоторым важным вопросам.
Сражаясь с возникшей проблемой, Пуанкаре понял, что он попросту был неправ. Даже малое изменение начальных условий может привести к возникновению разительно отличающихся орбит. Предложенное им приближение было недопустимым. Его предположение было ошибочным.
Пуанкаре телеграфировал печальные новости Миттаг-Леффлеру и попытался остановить публикацию своей статьи. Он писал ему в смущении:
Может случиться, что малые различия в начальных условиях порождают чрезвычайно большие расхождения в результирующих явлениях. Малая ошибка в первых порождает огромную ошибку в последних. Предсказания становятся невозможными.
Это сообщение «чрезвычайно озадачило» Миттаг-Леффлера:
Не то чтобы я сомневался в том, что Ваша работа в любом случае будет воспринята большинством геометров как гениальное произведение и станет отправной точкой для всех дальнейших трудов по небесной механике. Не думайте поэтому, что я сожалею о присуждении Вам премии […] Но хуже всего то, что Ваше письмо пришло слишком поздно и статья уже была разослана.
На карту была поставлена репутация Миттаг-Леффлера, который не обнаружил ошибку до публичного присуждения премии Пуанкаре. Не так следовало бы отмечать юбилей монарха! «Пожалуйста, не говорите никому ни слова об этой прискорбной истории. Завтра я сообщу Вам все подробности».
Следующие несколько недель прошли в попытках изъять отпечатанные экземпляры статьи, не возбуждая ничьих подозрений. Миттаг-Леффлер предложил Пуанкаре оплатить печать исходного варианта. Пристыженный Пуанкаре согласился, хотя стоимость тиража составила более 3500 крон, то есть на тысячу больше той премии, которую он изначально завоевал.
В попытке исправить положение Пуанкаре попробовал разобраться со своей ошибкой, понять, где и почему он был неправ. В 1890 г. он написал вторую, расширенную статью, в которой объяснял свое предположение о возможности внезапного разлета, по-видимому, устойчивых систем вследствие чрезвычайно малых изменений.
Открытие Пуанкаре, вызванное его ошибкой, привело к появлению одной из важнейших математических концепций прошлого века – понятия хаоса. Это открытие установило существенные пределы тому, что может познать человечество. Пусть я выписал все уравнения движения игральной кости, но что, если моя кость ведет себя подобно планетам Солнечной системы? В соответствии с открытием Пуанкаре, даже одна маленькая ошибка в определении начального положения кости может разрастись в огромное расхождение исхода броска к тому моменту, как кость закончит свое движение по столу. Значит ли это, что будущее игральной кости из Лас-Вегаса сокрыто завесой математики хаоса?
Хаотическая траектория единичной планеты, вращающейся вокруг двух солнц
2
Если бы природа не была прекрасной, она не стоила бы того, чтобы быть познанной, а если бы природа не стоила того, чтобы быть познанной, то и жизнь не стоила бы того, чтобы быть прожитой.
Когда я учился в университете, я потратил кучу времени, играя в бильярд в комнате отдыха студенческого общежития. Я мог бы сделать вид, что занимался там исследованиями углов и всего такого прочего, но на самом деле я попросту убивал время. Это был хороший способ оттянуть тот момент, когда мне нужно было браться за решение заданных на очередную неделю задач, с которым я не мог справиться. Тем не менее бильярдный стол таит в себе множество интересной математики. И эта математика имеет самое прямое отношение к моему стремлению познать игральную кость.
Если запустить шар по бильярдному столу и отметить его траекторию, а затем запустить другой шар в направлении, очень близком к первому, то второй шар опишет траекторию, очень похожую на путь первого. Пуанкаре изначально считал, что тот же принцип применим и к Солнечной системе. Если отправить планету по слегка отличающейся траектории, то развитие Солнечной системы пойдет по очень похожему пути. Это интуитивно очевидно для многих из нас: малое изменение изначальной траектории планеты не должно привести к значительным изменениям пути ее движения. Но Солнечная система, по-видимому, играет на своем бильярде в несколько более интересную игру, чем я играл студентом.
Как это ни удивительно, если изменить форму бильярдного стола, то такое интуитивное представление окажется неправильным. Например, если запускать шары по столу, имеющему форму стадиона с полукруглыми торцами и прямыми боковыми сторонами, то их траектории будут разительно отличаться друг от друга, несмотря на то что шары были запущены в почти одном и том же направлении. Это визитная карточка хаоса – чувствительность к крайне малым изменениям начальных условий.
Две быстро расходящиеся траектории бильярдного шара на столе в форме стадиона
Поэтому моя задача состоит в том, чтобы установить, предсказуемо ли падение игральной кости подобно обычной игре в бильярд, или же эта кость играет в бильярд хаотический.
Дьявол после запятой
Хотя считается, что лавры отца хаоса принадлежат Пуанкаре, такая чувствительность многих динамических систем к малым изменениям была на удивление мало известна в течение многих десятилетий XX в. Собственно говоря, для обретения идеями хаоса более широкой известности потребовалось повторное открытие этого явления ученым Эдвардом Лоренцем, который, как и Пуанкаре, думал, что допустил какую-то ошибку.
В 1963 г., когда Лоренц, работавший в Массачусетском технологическом институте метеорологом, обсчитывал на своем компьютере уравнения изменения температуры динамической текучей среды, он решил, что одна из моделей требует более длительного обсчета. Он взял некоторые данные, полученные раньше, и снова ввел их в машину, собираясь перезапустить модель начиная с этой точки.
Вернувшись после чашки кофе, он с ужасом обнаружил, что компьютер не воспроизвел предыдущие результаты, а очень быстро выдал значительно расходящиеся с ними предсказания изменений температуры. Сначала он не мог понять, что происходит. Если ввести в уравнение то же самое число, на выходе не ожидаешь получить другой ответ. Но через некоторое время он понял, в чем было дело: он ввел не те же самые числа. В использованной им компьютерной распечатке данных значения были указаны с точностью до третьего знака после запятой, а вычисления проводились с точностью до шестого знака.
Хотя числа действительно отличались друг от друга, расхождения между ними были лишь в четвертом знаке после запятой. Трудно было ожидать, что это приведет к такой большой разнице, но Лоренца поразило то влияние, которое такое малое расхождение оказало на результат. Ниже показаны два графика, созданные с использованием одного и того же уравнения, но с чрезвычайно малым различием между данными, введенными в уравнение. В одном графике значение входного параметра равно 0,506127. Во втором графике оно округлено до 0,506. Хотя графики начинаются со сходных траекторий, их поведение очень быстро становится совершенно разным.