Литмир - Электронная Библиотека
Содержание  
A
A

А в кино в тот день мы всё-таки опоздали и хроники не видели. Нулик по этому поводу выдал на-гора историческую фразу: «Заниматься наукой надо в свободное от кино время!»

2 Марко 2

Международный автобус мчит нас с Единичкой в Сьеррахимеру. Драгоценный конверт в наших руках, и, следовательно, разгадка тайны исчезнувшей марки близка. Но недаром говорят: близок локоть, да не укусишь… От избытка предположений у меня лопается голова, и чтобы она действительно не лопнула, Единичка придумала небольшую разрядку.

— Как вы думаете, — спросила она, — чего больше: целых положительных чисел или их квадратов?

Это было так неожиданно, что я сразу и не понял, чего она от меня хочет, но тут же рассмеялся и ответил на её более чем детский вопрос:

— Разумеется, целых положительных чисел значительно больше, чем их квадратов.

Для наглядности я написал на бумажке последовательные квадраты натурального ряда чисел: 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400, 441, 484, 529, 576, 625, 676, 729, 784, 841, 900, 961.

— Взгляни сюда, — сказал я Единичке, — видишь, как редко встречаются в натуральном ряду квадраты целых чисел! Поначалу они расположены ещё более или менее близко: 1, 4, 9, 16, 25, 36… Но чем дальше, тем они реже. Вот, например, в третьей сотне первый квадрат 225, за ним сразу следует 256, потом 289. А в десятой сотне квадраты встречаются и того реже. Их всего два: 900 и 961. Теперь представь себе десяти — или стозначные квадраты, — между ближайшими из них такие расстояния, что от одного до другого нужно лететь самолётом. Так что тут и двух мнений быть не может: квадратов куда меньше, чем натуральных чисел.

Единичка, надо ей отдать справедливость, слушала меня не перебивая, но затем сказала:

— А по-моему, раз каждое целое число можно возвести в квадрат, значит, чисел и их квадратов совершенно одинаковое количество.

Ну и характерец! Знает ведь, что неправа, а всё-таки спорит.

— Что с того, что у каждого числа есть свой квадрат? — возмутился я. — Выкинь из натурального ряда все числа, представляющие собой квадраты, и ты увидишь, как мало пробелов образуется в этом ряду. Нет, квадраты твои просто тонут в общей куче чисел. И не спорь, пожалуйста!

— А я и не спорю, — хладнокровно сказала Единичка, — я только пытаюсь понять, в чём тут загвоздка. Допустим, я не стану выбрасывать квадраты, как предлагаете вы, а подпишу их по порядку под каждым числом натурального ряда: под единицей — единицу, под двойкой — четвёрку, под тройкой — девятку, под четвёркой — 16 и так далее.

1 2 3 4 5 6 7 8…

1 4 9 16 25 36 49 64…

Таким образом под каждым целым числом будет стоять его квадрат, и, стало быть, квадратов столько же, сколько целых чисел. Правда ведь?

— Не пытайся меня запутать! — вспылил я. — И вообще прекратим эту бесплодную дискуссию.

— Пожалуйста, — пожала плечами Единичка. — Но ведь от этого целых чисел не станет больше, чем их квадратов…

Ещё секунда — и я сразил бы её неоспоримым аргументом, но тут как раз автобус остановился у городских ворот, над которыми красовалась надпись: «Сьеррахимера». Чуть пониже белела табличка, оповещающая всех и вся, что вход и въезд в Сьеррахимеру посторонним воспрещён. Мы так и сели! Для чего же, спрашивается, надо было мчаться сюда сломя голову? И что теперь делать с конвертом? Как передать его пресловутому Кактусу? Ответа на это не было. В довершение всех бед, автобус, высадив нас, тотчас развернулся и как ни в чём не бывало укатил обратно в Сьеррадромадеру, а мы с Единичкой остались перед наглухо запертой решёткой.

— Голубчик, — обратился я к стоявшему у ворот часовому, — не скажете ли, отчего нас не пускают?

Ответ был столь же краток, сколь и неубедителен:

— Не велено!

— Это я и сам прочитал. Но по какой причине? — допытывался я.

— А по той, что вот уже восемь месяцев и двенадцать дней их превосходительство вице-губернатор решают задачу, которую задал им один проходимец. Решают, решают, да все без толку. А проходимец возьми да и скройся! Вот и приказано никого не пускать, пока задача не решится.

Услыхав это, я сразу понял, что не все потеряно.

— Мы спасены! — шепнул я Единичке и, приняв внушительный вид, сказал часовому: — Немедленно доложите вашему правителю, что дело его в шляпе, потому что ко двору его пожаловал сам Магистр Рассеянных Наук. А где Магистр, там нерешённых задач не бывает!

Слова мои, видимо, произвели на часового известное впечатление. Он тут же позвонил в комендатуру и попросил доложить о нас вице-губернатору.

Пока мы стоим и ждём ответа, позвольте рассказать вам о необыкновенном конверте, лежащем в моём рюкзаке, а главное — о великом открытии, сделанном Единичкой. Как вам уже известно, конверт был вскрыт и, кроме того, пуст. Поначалу это нас и озадачило и огорчило. Но тут Единичке пришло в голову обратить внимание на марку, наклеенную в правом верхнем углу конверта. И что бы вы думали? Только не падайте в обморок от неожиданности! Это была та самая марка, за которой мы с Единичкой гоняемся по всем террам и сьеррам, какие только существуют на белом свете! Да, да, та самая марка, на которой вместо Христофора Колумба изображён Марко Поло! Марка, сохранившаяся всего лишь в двух экземплярах, один из которых украден!

Ну вот, сенсационное сообщение сделано, теперь, пожалуй, самое время заняться логическими выкладками. Марка украдена. Марка, лежащая в сейфе Джерамини-младшего, исчезла. Но эта же марка наклеена на конверт, который Джерамини посылает некоему Кактусу. Обстоятельство более чем странное. Выходит, Джерамини украл марку сам у себя… Но зачем?

На этом месте я вынужден прервать свои рассуждения, так как мы с Единичкой отправляемся на индульгенцию к вице-губернатору Сьеррахимеры… Как видите, имя Магистра Рассеянных Наук сделало своё дело: нас ждут, и с не-тер-пе-ни-ем!

Итак, как говорят французы, вернёмся к нашим баранам, то есть я хотел сказать — к нашему губернатору. Когда нас ввели в роскошный дворцовый парк, губернатор сидел под шёлковым, затканным диковинными цветами и птицами балдахином и смотрел себе под ноги. Я подошёл поближе, чтобы приветствовать его, но он даже не поднял головы. Я кашлянул — никакого впечатления. В чём дело? Слепой он, что ли? Или, чего доброго, глухой? Тогда я подошёл ещё ближе и приготовился отвесить неразговорчивому правителю классический испанский поклон — совсем как в театре! Но тут он взвился как ужаленный и завизжал:

— Стоп! Ни с места!

— Что случилось? — спросил я, испуганно попятившись и, надо сказать, весьма обескураженный таким нелюбезным приёмом.

Губернатор схватился за голову.

— Он ещё спрашивает! Разве вы не видите, что чуть не наступили на задачу?!

Я посмотрел вниз и увидал полукруг из листового золота диаметром эдак сантиметров пятьдесят. Ничего себе задачки предлагают в этой стране! Подумать только, сколько драгоценного металла ушло на эту штуковину…

— Так это и есть ваша задача? — спросил я. — А в чём она заключается?

Тут наконец губернатор впервые обратил ко мне свои ясные очи, в которых сверкало откровенное злорадство.

— О, задача хитрая! На мой взгляд, даже чересчур. Но вы ведь, кажется, похвалялись её решить?

— Да, ваше вице-губернаторство, — подтвердил я скромно, но твёрдо.

— Для вашего же блага советую вам сдержать обещание, иначе придётся вам познакомиться с обитателем вон той клетки.

Я посмотрел в указанном направлении и увидел невдалеке большую, полускрытую зеленью клетку, откуда доносились какие-то странные звуки: рёв, блеяние, шипение… Мне, признаться, сразу стало как-то неуютно. Не то чтобы я усомнился в своих математических способностях, но решать задачи приятнее, знаете ли, в более миролюбивой обстановке. Однако я и вида не подал, что взволнован, и попросил моего мучителя изложить существо задачи.

— Извольте, — сказал он. — Вот вам золотой полукруг. Надо провести в нём мелом одну, да, да — одну-единственную линию, но так, чтобы она разделила его на две части, из которых большая равна квадрату радиуса этого полукруга.

77
{"b":"558777","o":1}