Литмир - Электронная Библиотека

Самая внешняя сфера обращается ежедневно в направлении восток-запад по отношению к небесному экватору, ее ось ориентирована с севера на юг. Период обращения равен сидерическому дню. Ось следующей сферы образует угол в 24° по отношению к первой, и сфера вращается с запада на восток. Период обращения для каждой планеты свой: один месяц для Луны, один год для Солнца, Меркурия и Венеры, два года для Марса, 12 лет для Юпитера и 30 — для Сатурна.

Две следующие сферы называются синодическими. После полного оборота первой сферы планета снова оказывается в той же точке неба по отношению к Солнцу (если наблюдать с Земли) — это называется синодическим периодом. Полюса сферы находятся в плоскости эклиптики и вращаются с юга на север. Период обращения этой сферы равен 110 дням для Меркурия, 570 дням для Венеры, 260 дням для Марса и примерно 390 дням для Юпитера и Сатурна. Последняя внутренняя сфера вращается с таким же периодом, как предыдущая, но в направлении север-юг. Эти сферы вращаются вместе таким образом, что планета при наблюдении из центра, где находится Земля, описывает кривую, хорошо известную Евдоксу,— гип- попеду. На рисунке сверху изображены две внутренние сферы; планета находится в точке Р, комбинация двух сфер при своем движении заставляет планету описывать гиппопеду.

По кругу с Землей. Коперник. Гелиоцентризм - img_28.jpg

РИС. 1

По кругу с Землей. Коперник. Гелиоцентризм - img_29.jpg

РИС. 2

На рисунке изображено попятное движение Марса, как мы можем наблюдать его в некоторые моменты с Земли: от 41 до 42 он перемещается с востока на запад, но с А2 до 44 — с запада на восток; наконец, от 44 до 45 планета снова движется с востока на запад. Внизу можно увидеть схему четырех небесных сфер и их осей, которые, согласно Евдоксу, есть у каждой планеты. Земля фиксирована в центре; планета — точка на внешней сфере.

Модель завершают третьи сферы для Солнца и Луны, оси которых лежат в плоскости эклиптики и которые объясняют некоторые колебания светила на своей орбите в направлении север-юг. С точки зрения Евдокса, светила движутся по концентрическим сферам, объединенным в восемь групп — одна для неподвижных звезд и по одной для каждой планеты, Солнца и Луны. Таким образом, Евдокс первым объяснил попятное движение планет. Это было блестящее решение, хотя оно и оставляло открытыми некоторые вопросы, слишком сложные для IV века до н.э. Даже сегодня в компьютерных симуляциях непросто подобрать параметры модели, чтобы изобразить движение планет без упрощений.

По кругу с Землей. Коперник. Гелиоцентризм - img_30.jpg

На рисунке изображены две внутренние сферы согласно Евдоксу. Земля по-прежнему в центре.

Совместное движение обеих сфер приводит к тому, что планета описывает гиппопеду, или кривую в форме восьмерки.

Хотя эта модель кажется слишком сложной, существуют доказательства, что она применялась на практике. Так называемый антикитерский механизм, открытый в начале XX столетия и датируемый I веком до н.э., был переносным механическим калькулятором, который, кроме прочего, позволял вычислять астрономические положения. Этот инструмент был тщательно изучен, и хотя сохранились лишь его фрагменты, теперь известно, что с его помощью можно было определить движение Луны по модели Гиппарха, которого впоследствии цитировал Птолемей.

Согласование геоцентрических идей и астрономических измерений требовало введения в модель дополнительных независимо вращающихся сфер. Таким образом можно было смоделировать большую часть наблюдаемых движений Солнца и Луны, а также известных планет. И все же в этой системе оставались труднообъяснимые моменты: можно было объяснить попятное движение планет в некоторые периоды года, но не изменение их яркости. До Птолемея так и не был найден способ включить в модель этот факт.

ГИППОПЕДА

Гиппопеда — это плоская кривая, которую можно получить сечением тора плоскостью, параллельной оси тора. Если большой радиус тора — R, а малый — r, то в декартовых координатах получившуюся фигуру можно описать так:

(x2+f)2 + 4r (r-R) (x2+y2) = 4 r2x2.

Это рациональная алгебраическая бициркулярная кривая четвертого порядка, симметричная относительно двух своих осей. Первым математиком, исследовавшим эти кривые, был Евдокс. На следующем рисунке приведены примеры гиппопеды.

По кругу с Землей. Коперник. Гелиоцентризм - img_31.jpg

Слева — семейство гиппопед для случая 2 > R/r > 0,2. Справа — получение гиппопеды сечением тора плоскостью.

ВИДИМОЕ ДВИЖЕНИЕ СОЛНЦА

Без сомнения, Солнце — самое первое светило, которое человек изучал невооруженным глазом. Каждый день оно описывает на небосводе различные полуокружности. На протяжении года ежедневный путь Солнца смещается с севера на юг и обратно в зависимости от сезона. Крайние точки этого перемещения называются точками летнего и зимнего солнцестояния. Зимнему солнцестоянию соответствует самый короткий день в году, а летнему — самый длинный. Между двумя солнцестояниями кривая Солнца проходит две промежуточные точки, которые соответствуют двум равноденствиям (весеннему и осеннему); в этих точках день примерно равен ночи. Ежедневное изменение этих полуокружностей является полезным показателем. Уже представители древних культур, создавшие Стоунхендж в Англии или Чанкильо в Перу, использовали каменные указатели для определения дат в течение года. Но какое отношение это наблюдаемое движение имеет к настоящему движению Солнца? Чтобы создать непротиворечивую космологию, нужно было решить эту проблему. Птолемей, который находился под влиянием определенных философских идей и опирался на видимую неподвижность нашей планеты, пришел к выводу о том, что это Солнце движется вокруг Земли. Из наблюдений за перемещениями светила гений Птолемея вывел модель его небесного движения.

По кругу с Землей. Коперник. Гелиоцентризм - img_32.jpg

Развалины Чанкильо (Перу), рассматриваемые как солнечная обсерватория. Более чем двухтысячелетний возраст этих развалин позволяет считать их самой древней солнечной обсерваторией Америки.

У Коперника была возможность познакомиться с классическими трудами, хранящимися в библиотеках итальянских университетов. Знание латыни и греческого оказалось очень полезным при анализе источников, а также для изучения комментариев, редакций и критических текстов, опубликованных после изобретения книгопечатания. Он подробно исследовал существующие небесные модели, сопоставляя многочисленные значения из астрономических таблиц, имевшихся в его распоряжении. Добавим еще эксперименты, проведенные им лично и направленные на подтверждение или опровержение отдельных деталей в изучаемых моделях. Практический опыт, который Коперник получил у Новары, оказался чрезвычайно важным.

ЮБИЛЕЙНЫЙ ГОД

Можно утверждать, что Николай Коперник провел 1500 год в Риме. Вечный город переживал огромный приток паломников, и, быть может, именно по этой причине сам ученый оказался в столице. Однако возможно и другое: мы знаем, что Новара в тот год преподавал математику в Римском университете, поэтому существует вероятность, что Коперник сопровождал своего учителя, чтобы прослушать этот курс. Молодой ученый мог посвятить это время углубленному изучению церковного права. В любом случае в своей книге «О вращении небесных сфер» Коперник описывает лунное затмение, которое он наблюдал 6 ноября 1500 года.

Данные об этом периоде жизни Коперника противоречивы. Ретик в своем «Первом повествовании» утверждает, что ученый из Торуня воспользовался пребыванием в Риме, чтобы прочитать курс (и даже поучаствовать в дебатах), в котором он впервые изложил свои идеи гелиоцентризма. Мнение этого весьма скрупулезного ученого заслуживает определенного доверия. Хотя подтвердить существование этого курса невозможно, известно, что римская курия очень положительно отзывалась о знаниях Коперника в последние годы того десятилетия и начале следующего, и это мнение можно связать как раз с римским периодом.

11
{"b":"557921","o":1}