Литмир - Электронная Библиотека
A
A

Развитие теории света Томасом Юнгом, Огюстеном Френелем, Густавом Кирхгофом и их последователями не содержит ответа на вопрос Планка. Не ответили на него и современные теории света — квантовая и волновая. Стали привычными разрывы в логике, связанные с использованием квантовых представлений в описании ряда явлений волновой оптики. Энергоатомарная или субквантовая модель фотона без дополнительных характеристик, очевидно, не имеет достоинств волновой теории света при объяснении интерференции. Следовательно, ни принцип Гюйгенса, ни теория истечения Ньютона сами по себе не соответствуют реальности.

Но ведь в природе естественно сосуществуют в каждом фотоне волновые и корпускулярные качества. Космические кванты света после длинного пути к нам выбивают электроны из атомов вещества и интерферируют, сохраняют способность сложения интенсивностей излучения.

На вопрос Планка, по-видимому, можно ответить, сопоставив субквант и электрон, показывающий удивительную гармонию волновых и корпускулярных качеств.

А допустимо ли их сравнивать, пытаться найти в них нечто общее? Ведь у них совершенно разные параметры и характеристики. И все же их сопоставление обосновано и продуктивно.

В 1833 году Уильям Гамильтон в работе «Об общем методе выражения путей света и планет с помощью коэффициентов некоторой характеристической функции» сравнил вроде бы несравнимое — свет и планеты — и выявил общность между частицами и волнами. Следуя его примеру, вполне определенную общность можно заметить у электрона и субкванта.

Основы электронной оптики имеют много общего с основами световой, фотонной оптики. Обе они подразделяются на геометрическую и волновую, обе имеют дело с корпускулярными и волновыми свойствами электронов и фотонов, с дифракцией, интерференцией, с другими характеристиками — вплоть до полной их аналогии. Так, например, один из разделов первого тома «Основ электронной оптики» Питера Хокса и Эрвина Каспера в главе о гамильтоновой оптике так и озаглавлен: «Аналогия со световой оптикой». При обсуждении физического смысла характеристической функции электрона там сообщается, что «аналогия с геометрической световой оптикой является полной».

Обе оптики используют сходный или одинаковый математический формализм, сходные формулы, особенно при описании статистических явлений, а также колебательных и волновых процессов, процессов переноса электронов и фотонов.

Следовательно, субквантовый фотон не имеет противопоказаний быть реальным и со стороны таких явлений, как интерференция и дифракция.

Эйнштейн был сторонником представления кванта излучения в виде частицы, хотя и не употреблял этот термин. Он писал: «То, что наши теперешние основы теории излучения должны быть отброшены, я уже пытался показать ранее… Я считаю, что следующая фаза развития теоретической физики даст нам теорию света, которая будет в каком-то смысле слиянием волновой теории света с теорией истечения. Нельзя считать несовместимыми обе структуры, волновую и квантовую».

Субквантовое представление сущности излучений, вероятно, является шагом в этом направлении. Факты подобия электронов и субквантов, частиц и атомов энергии, участвующих в интерференции и дифракции (волновых явлениях), свидетельствуют в пользу такого предположения.

Микроскопическая электродинамика показала, что движение зарядов в электролитах не подчиняется уравнениям Максвелла. Выяснение этого обстоятельства привело к открытию электрона. Квантовая теория излучения показала, что электродинамические теории света совершенно чужды постоянной Планка. Сопоставление ее с опытом, расчетами и логикой связи фактов подтверждает обоснованность идеи атома энергии субкванта, который лежит в основе кванта энергии — фотона. Субквантовые представления и явления обобщаются квантовыми.

Зримым подтверждением этого послужил уникальный фотоснимок пикосекундного светового импульса в пигментирующей среде, полученный в 1973 году фирмой «Белл Телефон». Импульс явно не согласуется с волновой теорией Гюйгенса. Он гораздо ближе к представлению переноса субкванта в среде, возмущенной его движением, то есть сопровождаемый поперечными волнами.

Аналогичное описание фемтосекундных лазерных импульсов в линейных диспергирующих средах, их оптику можно найти в книге Сергея Ахманова, Виктора Выслоуха и Анатолия Чиркина.

Следовательно, для ответа на вопрос Планка надо лишь отойти от принципа Гюйгенса и электромагнитной теории света с ее непрерывностью между статическим и динамическим полем. Они противоречат опыту. Пусть с недоверием, с оглядками на привычную электромагнитную теорию и с перепроверкой каждого положения субквантового представления света, но согласиться с его обоснованностью.

Все это дает основание рассматривать перенос субквантов в пространстве в соответствии с принципом Ферма — Ньютона. Как известно, кинематический принцип Ферма утверждает, что возмущение от любой из точек среды распространяется к другой ее точке и к приемнику по лучу, являющемуся экстремалью функционала Ферма. В конечном счете это определяет кинематику геометрической оптики и может быть сформулировано в качестве динамического принципа. Теория истечения Ньютона в основе своей сходна с этим принципом Ферма.

3АТМЕНИЕ

7 ноября 1919 года лондонская «Таймс» вышла с заголовками «Революция в науке. Новая теория Вселенной. Идеи Ньютона опровергнуты». В Нью-Йорке добавили: «Лучи изогнуты, физики в смятении. Теория Эйнштейна торжествует». Сообщили также, что «Пространство разоблачили: оно кривое».

Так многие газеты встретили известие о притяжении света Солнцем, которое предсказал Эйнштейн. Этот факт установили экспедиции в Бразилии и на острове Принсипи при наблюдении солнечного затмения.

Люди устали от войны и очень хотели отвлечься от нее. Таинственная и уже этим привлекательная теория, по которой чудесным образом изгибаются лучи далеких звезд, сразу же стала сенсацией номер один.

Президент Лондонского Королевского общества Джозеф Томсон провозгласил ее высочайшим достижением человеческой мысли. В Цюрихе физики сочинили стихи:

Нет сомнений и в помине,
Свет, как знаем мы отныне,
По кривой в пространстве мчит
И Эйнштейна имя чтит.

Но были не только восторги. Философ и математик Альфред Уайтхед заметил, что нет никаких оснований предполагать у теории Эйнштейна более определенный характер, чем у «Начал» Ньютона. С ее представлением гравитации не силой воздействия одного тела на другое, а свойством пространства-времени не согласились Альберт Майкельсон, Оливер Хевисайд, Анри Пуанкаре, Эрнст Мах, Туллио Леви-Чивита и ряд других ученых.

Обильная, но малодоказательная критика общей теории относительности — новой теории гравитации — не помешала считать ее одной из основ современной физики и космологии. Изгиб лучей света и изменение его спектра близ Солнца были признаны доказательством верности теории.

Эйнштейн говорил, что наука — это драма, драма идей.

В статье о наблюдении затмения Дайсон, Эддингтон и Дэвидсон привели три альтернативы, из которых им предстояло сделать выбор:

1. Гравитационное поле не оказывает влияния на траекторию луча света.

2. Гравитационное поле действует на энергию или массу света так же, как и на обычное вещество по закону строго ньютоновского характера.

3. Ход луча света согласуется с общей теорией относительности Эйнштейна, причем и в этом случае гравитационное поле действует на свет точно так же, как и на обычное вещество.

Да, фотоны звездных лучей имеют массу, в среднем равную 4,4·10−33 грамма. Поэтому они могли быть притянуты к Солнцу. Но по какому закону — Ньютона или Эйнштейна?

Директор Парижской обсерватории Экслангон в 1924 году писал, что наблюдения солнечных затмений не подтверждают и не опровергают закон отклонения Эйнштейна. Они лишь указывают, если отбросить всякие предположения о систематических ошибках, на существование отклонений около Солнца, но без определения закона и без точной величины отклонения у солнечного края. В 1955 году член-корреспондент Академии наук СССР Михайлов в докладе о наблюдении эффекта Эйнштейна отметил, что эти слова остаются справедливыми и поныне, несмотря на последующие наблюдения.

9
{"b":"555921","o":1}