Литмир - Электронная Библиотека
A
A
4 — тормозные парашюты; 5 и 8 — теплозащитная плита;
6 — тормозные ракеты; 7 — приборы

В центре капсулы согласно проекту [10] располагается металлическая кабина для космонавта похожая на большую телевизионную трубку. В утолщенной части капсулы предусмотрен контейнер для тормозных ракет, а в противоположном носовом отсеке разместятся парашюты (рис. 5).

В кабине с регулируемым микроклиматом перед космонавтом установят панорамные приборы, телевизионный экран, пульт управления. В ней будут запас пищи и воды, удобное поворачивающееся кресло, а также средства радиосвязи с Землей. Стартовый вес баллистической капсулы должен достигать 1300 кг, вес капсулы при движении по орбите (орбитальный вес) — 1010 кг, а при входе в атмосферу -870 кг [11]. Около половины орбитального веса составит вес системы спасения и теплозащитной плиты из окиси бериллия или стеклопластика. Корпус капсулы построят из жаропрочного сплава с двойными стенками. Между ними расположится теплоизоляционный материал.

Капсула отделится от корпуса ракеты на высоте 180 км и при помощи небольших ракет повернется утолщенной частью вперед по полету. Для чего это делается?

При входе капсулы в атмосферу вся энергия движения превращается в тепло. Интенсивность нагрева настолько велика, что лишь небольшая часть тепла успевает излучиться обратно в атмосферу.

После третьего оборота вокруг Земли капсула с человеком попадет в заданный район орбиты, откуда начнется этап входа в атмосферу. По команде с Земли последовательно сработают три тормозные ракеты, которые снизят скорость капсулы, в результате чего она изменит орбиту и, облетая Землю по эллипсу, у которого ближайшая к центру Земли точка лежит на земной поверхности, войдет в плотные слои воздуха.

При входе в атмосферу окись бериллия или стекло-пластик начнет возгоняться [11] и тепло будет отводиться в атмосферу. В период наибольшего нагрева капсулы температура воздуха в кабине на несколько минут поднимется до 65 °C. В остальное время она будет не выше 35 °C.

Скорость капсулы на высоте 18 км снизится до 300 м/сек. В этот момент раскроется малый металлический парашют, а на высоте 3000 м — большой. Дальнейший путь к Земле после раскрытия большого парашюта не представит больших технических трудностей. Парашют уменьшит скорость снижения капсулы и достаточно плавно опустит ее на поверхность земли или воды.

Казалось бы, баллистическая капсула — самый надежный аппарат для возвращения из космоса. Однако и она не без недостатков. Нелегко испытать надежность раскрытия металлических парашютов. Ведь они должны срабатывать на высотах полета, где давление атмосферы во много раз меньше земного, и при очень больших скоростях полета. Кроме того, парашют, состоящий из множества металлических пластинок или из проволочной сетки, не так просто поместить в небольшом отсеке баллистической капсулы. Нельзя ли систему спасения сделать более надежной?

Спутник с аэродинамическим тормозом

Можно создать еще один аппарат, пригодный для плавного снижения скорости возвращаемого спутника, — аппарат с аэродинамическим тормозом [12]. Спутник с тормозным устройством будет установлен в носовой части последней ступени ракеты. После отделения от нее спутник со сложенным аэродинамическим тормозом и закрытым сверху обтекателем будет похож на нераспустившийся бутон розы (рис. 6). Этот металлический «цветок» весом более тонны будет нести в кабине одного космонавта.

Возвращение из космоса - i_006.png
Рис. 6. Спутник с аэродинамическим тормозом

По своей конструкции аэродинамический тормоз будет похож на обычный зонтик. Однако вместо тонких спиц в нем установят стальные ребра-так называемые шпангоуты. Вес их составит более половины общего веса спутника. Шпангоуты обтянуты. тонкой, но прочной тканью из нержавеющей жароупорной стали. Тормоз должен раскрываться при помощи пневматического механизма.

Выведенный на орбиту, наивысшая точка которой лежит на высоте около 200 км, спутник при нераскрытом тормозе сможет существовать два дня. Перед входом в плотные слои атмосферы аэродинамический тормоз плавно раскроется, и спутник станет похож на распустившийся цветок. В таком положении его лобовое сопротивление увеличится в двадцать раз, и он через два часа войдет в плотные слои атмосферы.

Система управления тормозом несложна. До начала снижения положение спутника в пространстве будет определяться лишь временем полета. В период спуска величина торможения будет непрерывно измеряться специальным прибором-акселерометром и сравниваться с заданным значением. Разность между измеренными и нужными значениями будет поступать в виде напряжения электрического тока в сервомеханизм, управляющий раскрытием тормоза.

Наибольшая температура нагрева поверхности спутника согласно проекту не превысит 815 °C, а температура аэродинамического тормоза при двухсторонней излучающей поверхности-65 °C. Максимальный нагрев наступит на высоте 82 км, где нагрузка при торможении станет четырехкратной. На высоте около 70 км человек почувствует уже 8-кратную перегрузку, а температура поверхности спутника снизится до 61 °C. Полное раскрытие тормоза наступит на высоте около 60 км.

В нижних «этажах» атмосферы скорость спутника уменьшится до 15,2 м/сек. Поскольку такая скорость приземления еще опасна, в конструкции предусматриваются специальные гидравлические амортизаторы [12], подобные тем, какие ныне устанавливают для безопасного приземления тяжелых самолетов.

Казалось бы, космический аппарат с подобным зонтиком всем хорош. Но и у него есть недочеты. Чтобы тормоз выдержал огромный напор воздуха при входе в плотные слои атмосферы, стальные ребра придется делать очень массивными. От этого утяжелится вся конструкция спутника.

Как облегчить тормозное устройство и сделать его меньше по размерам?

Космонавт… на вертолете

В поисках ответа на этот вопрос специалисты [13] вспомнили о вертолете. Этот аппарат, как известно, надежно служит человеку при полетах в нижних слоях атмосферы. Вращающиеся лопасти огромного несущего винта позволяют вертолету опускаться на Землю с любой малой скоростью. Но самое замечательное в том, что несущий винт вертолета верно служит даже и тогда, когда на высоте отказывает двигатель. Летчику достаточно установить лопасти винта в определенное положение, и все обходится благополучно. Сначала, конечно, вертолет быстро пойдет вниз, но набегающий воздух раскручивает несущий винт, и вертолет, опираясь вращающимися лопастями о воздух, плавно спускается на землю.

Нельзя ли вертолетный несущий винт (конечно, без двигателя) взять с собой на орбиту? Можно. Но для этого придется лопасти винта сложить вместе и закрыть чехлом. Чехол из жаропрочного и легкого бериллиевого листа перед входом в плотные слои атмосферы будет сброшен. Под действием встречного потока воздуха лопасти, имеющие профиль крыла, начнут расходиться в стороны и придут во вращение. Чем быстрее вращение, тем шире зонтик из лопастей. Ширину его без особого труда может регулировать сам космонавт, изменяя наклон лопастей по отношению к потоку воздуха, подобно тому как это делает летчик вертолета. А еще точнее менять наклон лопастей смогут автоматы. Можно автоматам задать такую программу, чтобы несущий винт плавно регулировал скорость спуска в зависимости от высоты и плотности атмосферы. При этом и перегрузки в кабине будут меняться плавно, не так резко, как при раскрытии парашюта.

Вертолетный ротор хорош и тем, что с его помощью можно спланировать перед приземлением в нужное место, выбрав наиболее подходящую посадочную площадку.

Конечно, чтобы с полной определенностью сказать, будет ли роторная система надежно работать в верхних слоях атмосферы — при таких огромных скоростях полета, нужно еще поставить немало опытов. Потребуется тщательно исследовать процесс раскрытия лопастей в этих условиях, узнать, до какой температуры разогреются лопасти винта при быстром полете, выдержат ли они этот нагрев. Ведь не так просто в земных условиях проверить все расчеты, выполненные пока на бумаге..

5
{"b":"554761","o":1}